期刊文献+

基于Moldflow与BP神经网络算法的三相铜牌注塑参数优化与预测分析 被引量:2

Optimization and Prediction of Injection Molding Parameters of A Three-Phase Copper Connector Based on Moldflow and BP Neural Network
原文传递
导出
摘要 以某三相铜牌为研究对象,基于正交试验和BP神经网络模型对铜片嵌入面平面度进行预测和分析。采用Moldflow浇口定位器,确定最佳的浇口位置并建立流道系统。基于初始工艺参数进行模流分析,发现三个位置的平面度均不满足要求。通过正交试验的极差与方差分析,得到各工艺参数对平均平面度的影响程度。建立BP神经网络,基于正交试验数据进行训练。结果表明:基于BP神经网络预测和模流分析,得到三个铜片嵌入面的平面度Ⅰ、Ⅱ和Ⅲ分别为1.402、1.488及1.571 mm,相比初始工艺分别降低25.3%、22.6%和27.1%,优化效果明显,且满足设计指标要求。试模样品外观状态良好,平面度满足要求,优化工艺可用于实际生产。 Based on the orthogonal test and BP neural network model,the flatness of copper embedded surface of a threephase copper connector was forecasted and analyzed.The best gate position was determined,and the runner system was established by using Moldflow gate locator.Based on the initial process parameters,the flatness of the three positions did not meet the requirements.The influence degree of each process parameter on the average flatness was obtained by the range and variance analysis of orthogonal test.BP neural network was established and trained based on orthogonal test data.The results show that based on the BP neural network prediction model and Moldflow analysis,the calculated flatness Ⅰ,Ⅱ and Ⅲ of the three copper embedded surfaces are 1.402,1.488 and 1.571 mm respectively,which are reduced by 25.3%,22.6% and 27.1% respectively compared with the initial process.The optimization effect is obvious,and all meet the design index requirements.The appearance of the product is in good condition,and the flatness meets the requirements.The optimized parameters can be used in actual production.
作者 程亚维 苏文芝 王东霞 CHENG Ya-wei;SU Wen-zhi;WANG Dong-xia(Jiyuan Vocational and Technical College,Jiyuan 459000,China)
出处 《塑料科技》 CAS 北大核心 2021年第9期70-74,共5页 Plastics Science and Technology
关键词 三相铜牌 玻纤增强PBT 正交试验 BP神经网络 Three-phase copper connector Glass fiber reinforced PBT Orthogonal test BP neural network
  • 相关文献

参考文献12

二级参考文献54

共引文献40

同被引文献30

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部