期刊文献+

鲁棒的低秩鉴别嵌入回归

Robust Low-Rank Discriminant Embedded Regression
下载PDF
导出
摘要 局部保持投影(Locality preserving projection,LPP)在特征提取中得到了广泛的应用。但是,LPP不使用数据的类别信息,并且采用L2范数来进行距离测量,对异常值高度敏感。本文从监督的角度考虑LPP的权值矩阵,并结合低秩回归的方法,提出一种新的模型来发现和提取特征。利用L_(2,1)范数来约束损失函数和回归矩阵,不仅降低了对异常值的敏感性,而且限制了回归矩阵的低秩条件。然后给出了优化问题的求解方法。最后,本文将该方法应用于多个人脸数据库和掌纹数据集进行了性能测试,并将实验结果与现有的一些方法进行比较,结果表明该方法是有效的。 Locality preserving projection(LPP)has been widely used in feature extraction.However,LPP does not use category information of data,and uses L2-norm for distance measurement,which is highly sensitive to outliers.We consider the weight matrix of LPP from a supervised perspective,and combine the method of low-rank regression to propose a new model to discover and extract features.By using L_(2,1)-norm to constrain the loss function and the regression matrix,not only the sensitivity to outliers is reduced,but also the low-rank condition of the regression matrix is restricted.Then we propose a solution to the optimization problem.Finally,we apply the method to a series of face database and palmprint dataset to test performance,and the experimental results show that the proposed method is effective.
作者 姚裕 万鸣华 黄伟 YAO Yu;WAN Minghua;HUANG Wei(School of Information Engineering,Nanjing Audit University,Nanjing 211815,China;School of Computer and Information Engineering,Hanshan Normal University,Chaozhou 521041,China)
出处 《南京航空航天大学学报》 CAS CSCD 北大核心 2021年第5期692-699,共8页 Journal of Nanjing University of Aeronautics & Astronautics
基金 2020年江苏省科研与实践创新计划(SJCX20_0670)资助项目 国家自然科学基金面上(61876213)资助项目 江苏省自然科学基金面上(BK20201397)资助项目 江苏省高校自然科学研究重大(18KJA520005)资助项目 2016年广东省自然科学基金-粤东西北创新人才联合培养基金(2016A030307050)资助项目 2016年广东省公益能力研究基金(2016A020225008)资助项目 2017年广东省科技厅平台建设基金(2017A040405062)资助项目。
关键词 局部保持投影 低秩回归 监督 特征提取 流形学习 locality preserving projection(LPP) low-rank regression supervised features extracting manifold-learning
  • 相关文献

参考文献3

二级参考文献28

  • 1He X, Yan S, Hu Y, Niyogi P, and Zhang H J. Face recognition using Laplacian faces. IEEE Trans. on Pattern Anal. Machine Intelli., 2005, 27(3): 328-340. 被引量:1
  • 2Turk M A and Pentland A P. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. 被引量:1
  • 3Sam T, Roweis and Saul K L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323-2326. 被引量:1
  • 4He X and Niyogi. Locality preserving projections. Proceedings of Advances In Neural Information Processing Systems 16, MA: Cambridge, MIT Press, 2004: 153-160. 被引量:1
  • 5Zhao Haitao, Sun Shaoyuan, Jing Zhongliang, and Jingyu Yang. Local structure based supervised feature extraction, Pattern Recognition, 2006, 39(88): 1546-1550. 被引量:1
  • 6Roweis S, Saul L, and Hinton G. Global coordination of local linear models. Proceedings of Advances in Neural Information Processing System 14, MA: Cambridge, MIT Press, 2001: 889-896. 被引量:1
  • 7Hallinan P. A deformable model for face recognition under arbitrary lighting conditions. [PHD thesis]. Havard Univ, 1995. 被引量:1
  • 8Graham D B and Allinson N M. Characterizing virtual eigensignatures for general purpose face recognition. In: Wechsler H., Phillips P.J., Bruce V., Fogelman-Soulie F., Huang T.S. eds.. Face Recognition: From Theory to Applications. NATO ASI Series F, Computer and Systems Sciences, 1998, 163: 446-456. 被引量:1
  • 9Agyemang T, Heblinski K, Schmieder K, et al. Accuracy As- sessment ,f Supervised Classification of Submersed Macro- phytes:The Case of the Gavaraget Region of Lake Sevan,Ar- menia[J]. Hydrobiologia, 2011,661 (1) : 85-96 . 被引量:1
  • 10Tracol Y,Gutierre J R,Squeo F A. Plant Area Index and Micro- climate Underneath Shrub Species from a Chilean Semiarid Com- munity[J]. Journal o{ Arid Environments, 2011,75 (1) : 1-6. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部