摘要
Ni-rich layered oxide LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)(x≥0.8)is the most promising cathodes for future high energy automotive lithium-ion batteries.However,its application is hindered by the undesirable cycle stability,mainly due to the irreversible structure change at high voltage.Herein,we demonstrate that F substitution with the appropriate amount(1 at%)is capable for improve the electrochemical performance of LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2) cathode significantly.It is revealed that F substitution can reduce cation mixing,stabilize the crystal structure and improve Li transport kinetics.The resulted LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(1.99)F_(0.01)cathode can deliver a high capacity of 194.4 mAh g^(-1) with capacity retention of 95.5%after 100 cycles at 2 C and 165.2 mAh g^(-1) at 5 C.In-situ synchrotron X-ray technique proves that F ions in the cathode materials can suppress the irreversible phase transition from H2 phase to H3 phase in high voltage region by preventing oxygen gliding in a-b planes,ensuring a long-term cycle stability.
基金
financially supported by the National Natural Science Foundation of China(No.52071085,51671058)
the Science and Technology Commission of Shanghai Municipality(No.19ZR1404200)。