期刊文献+

基于MFO-SVR的球磨机出粉量估算 被引量:1

Estimation of powder output of ball mill based on MFO-SVR
下载PDF
导出
摘要 针对球磨机出粉量难以测量的问题,文章借助以数据驱动为基础的软测量技术,建立了基于支持向量回归机(support vector regression,SVR)的球磨机出粉量估算模型。为减小模型的误差,使用飞蛾火焰优化(moth-flame optimization,MFO)算法对SVR的惩罚因子C以及径向基函数(radial basis function,RBF)核系数g进行优化。为验证MFO算法的可靠性,将此算法与粒子群优化(particle swarm optimization,PSO)算法、遗传算法(genetic algorithm,GA)进行比较,分别建立了球磨机出粉量的MFO-SVR、PSO-SVR、GA-SVR模型,试验结果表明MFO-SVR估算模型对出粉量有较好的预测和泛化能力。 Aiming at the difficulty of measuring the powder output of the ball mill,with the help of data-driven soft measurement technology,an estimation model of the powder output of the ball mill based on the support vector regression(SVR)machine was established.In order to reduce the error of the model,the moth-flame optimization(MFO)algorithm was used to optimize the penalty factor C of the SVR and the radial basis function(RBF)kernel coefficient g.In order to verify the reliability of the MFO algorithm,this algorithm was compared with the particle swarm optimization(PSO)algorithm and genetic algorithm(GA),and the MFO-SVR,PSO-SVR,GA-SVR models of the ball mill powder output were established respectively,and the test result shows that the MFO-SVR estimation model has a good ability to predict and generalize the powder output.
作者 宋宇 陆金桂 SONG Yu;LU Jingui(School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第10期1347-1352,1362,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家科技支撑计划资助项目(2013BAF02B11)。
关键词 球磨机出粉量 软测量 支持向量回归机(SVR) 飞蛾火焰优化(MFO) 粒子群优化(PSO) 遗传算法(GA) powder output of ball mill soft measurement support vector regression(SVR) moth-flame optimization(MFO) particle swarm optimization(PSO) genetic algorithm(GA)
  • 相关文献

参考文献19

二级参考文献168

共引文献144

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部