期刊文献+

基于改进粒子群算法的球磨机运行优化 被引量:3

Optimization for ball mill operation based on improved particle swarm optimization algorithm
下载PDF
导出
摘要 为了降低制粉系统球磨机的能耗率,对球磨机进行了运行优化的研究.在运行优化过程中,为了获得运行优化的目标模型,运用支持向量回归机对制粉出力进行了软测量建模,实现了制粉出力的在线软计算,得到了制粉单耗的计算模型.在此基础上,将混沌遍历的思想引入粒子群优化算法,提出了一种新的混沌遍历粒子群算法,该改进粒子群算法具有较快的搜索速度及全局收敛的特点.将该改进粒子群算法用于球磨机运行目标的优化从而获得最佳运行参数值.研究结果表明,运用所建立的运行优化目标模型及改进的优化算法可以获得球磨机的最佳运行优化参数,该研究具有重要的工程应用价值. To achieve a minimal unit power consumption and maximal output of ball mill in power plant, some research about optimization of the mill running parameters was done. During the optimizing process, the soft sensor model for monitoring pulverizing-capacity of the mill on line was established based on support vector regression (SVR) algorithm as well as the consumption model for pulverizing coal. Based on this work, the chaos theory was applied to improve the PSO (particles swarm optimization) algorithm in order to cope with the problems such as low-search speed and local optimization. Finally, the advanced PSO algorithm was used to optimize these models obtained in this paper to achieve the optimizing running parameters of pulverizing process. The results indicate that the optimizing parameters can be obtained through these models and advanced PSO algorithm. This study is useful for engineering application.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期419-423,共5页 Journal of Southeast University:Natural Science Edition
关键词 球磨机 支持向量机 粒子群 混沌 运行优化 ball mill support vector regression particle swarm chaos theory optimization
  • 相关文献

参考文献10

  • 1van den Bergh Frans, Engelbrecht A P. A cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3) : 225 - 239. 被引量:1
  • 2Parsopoulos K E, Vrahatis M N. On the computation of all global minimizers through particle swarm optimization [ J]. IEEE Transactionson Evolutionary Computation, 2004, 8(3) : 211 - 224. 被引量:1
  • 3Smola A, Sholkpf B. A tutorial on support vector regression for pattern recognition [ J]. Data Mining and Knowledge Discovery, 1998, 2:121 - 167. 被引量:1
  • 4Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines [C]//IEEE Workshop on Neural Networks for Signal Processing. Amelia Island, FL, 1997:276-285. 被引量:1
  • 5Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection[ C]//IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico, 1997:130 - 136. 被引量:1
  • 6张韵辉..软计算在热工过程中的应用研究[D].东南大学,2006:
  • 7苏志刚,王培红,于向军,吕震中.中储式制粉系统出力在线监测软测量建模[J].中国电机工程学报,2007,27(29):90-95. 被引量:21
  • 8卢侃等编译..混沌动力学[M].上海:上海翻译出版公司,1990:394.
  • 9黄润生..混沌及其应用[M],2000.
  • 10陈强..热工过程中的数据校正和多目标优化研究[D].东南大学,2004:

二级参考文献19

共引文献20

同被引文献42

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部