摘要
为了更准确地分析京津冀能源碳排放的时空演化特征及影响因素,基于NPP/VIIRS夜间灯光数据,估算2014-2019年京津冀城市群县级的能源碳排放量.结果表明:在空间尺度上,京津冀城市群能源碳排放总量呈现出“东部大于西部”的分布格局,沿海区域和城市的中心城区碳排放量较高;县级碳排放具有显著空间正相关,且相关性呈不断减弱趋势.在时间尺度上,京津冀城市群各地市在2014-2019年的能源碳排放量呈上升趋势,其中能源碳排放量上升速度最快的地市为保定市.该研究结果可为京津冀城市群节能减排方案的制定提供一定的参考.
In order to analyze the temporal and spatial evolution characteristics of the energy carbon emission and their influencing factors in the Beijing-Tianjin-Hebei region more accurately,based on the NPP/VIIRS nighttime light data,it was caculated the energy carbon emissions of the Beijing-Tianjin-Hebei urban agglom-eration from 2014 to 2019 at the county level.The results showed that:on the spatial scale,the total energy carbon emission of the Beijing-Tianjin-Hebei urban agglomeration presented"East>West"pattern,the coastal areas and central urban areas had higher carbon emissions.There was a significant positive spatial correlation in county-level carbon emissions,and the spatial correlation of carbon emissions showed a decreasing trend.On the time scale,the total energy carbon emissions of various cities in the Beijing-Tianjin-Hebei urban ag-glomeration showed an upward trend from 2014 to 2019.Among them,the city with the fastest increment in energy carbon emissions was Baoding.The research results could provide reference for the formulation of ener-gy saving and emission reduction plans for the Beijing-Tianjin-Hebei urban agglomeration.
作者
宋珺
周蕾
赵盟
迟永刚
SONG Jun;ZHOU Lei;ZHAO Meng;CHI Yonggang(College of Geography and Environmental Sciences,Zhejiang Normal University,Jinhua 321004,China;Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,China;Energy Research Institute National Development and Reform Commission,Beijing 100038,China)
出处
《浙江师范大学学报(自然科学版)》
CAS
2021年第4期467-474,共8页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家重点研发计划资助项目(2017YFB0504000)
国家自然科学基金资助项目(41871084
31400393)。
关键词
NPP/VIIRS
夜光遥感
能源
时空演变
影响因素
NPP/VIIRS
nighttime light remote sensing
energy
temporal and spatial evolution
influencing factors