期刊文献+

融合注意力机制和特征金字塔网络的CT图像肺结节检测 被引量:10

Detection of pulmonary nodules in CT images by combining an attention mechanism and a feature pyramid network
原文传递
导出
摘要 目的针对现有肺结节检测算法存在的因肺部计算机断层扫描(computed tomography,CT)图像肺结节与周边组织复杂性导致结节本身结构差异性不明显的问题,以及特征提取网络多次下采样造成图像分辨率降低进而导致检测结果差、仅使用网络顶层特征图进行预测造成图像空间信息丢失进而导致小结节漏检等问题,提出了一种基于注意力机制和特征金字塔的肺结节检测算法。方法根据语义与空间特征补偿机制以及卷积神经网络中网络深度所提取特征的信息量不同,在以Res Net为骨干网络的特征提取网络中设计通道—空间注意力机制,尽可能同时获取含有较多上下文语义以及空间位置信息的特征信息。在网络预测部分设计特征金字塔网络,将高维带有丰富语义信息的特征图与低维带有位置信息的特征图融合进行多尺度预测,增强网络对于小结节以及近血管结节等非显著性目标的检测性能。结果在LUNA16(lung nodule analysis 16)数据集上进行十折交叉验证显示,当平均假阳性个数为25.99时敏感度达到了97.13%,与基准方法相比,敏感度提高了2.53%,平均假阳性降低了28.54,实现了高敏感度低假阳性;在0.125、0.25、0.5、1、2、4、8这7个假阳率点的敏感度平均值为0.854,其中在每个扫描4次和8次假阳性时敏感度分别达到了0.940和0.951,其效果优于主流的结节检测方法。结论提出的结节检测模型,可以提高对3 10 mm小结节、近血管结节等非显著性目标的检测性能,并具有较低的假阳率。 Objective The different structure of the nodules have not been clear in terms of the lung computer tomography(CT) images interpretation level for lung nodules and surrounding tissues.The detected image resolution has been reduced due to multiple downsampling of the feature extraction network.The feature map of the network top-layer has been predicted to the losses of spatial information and missing nodules.A algorithm called attentionFPNRPN(attentionfeature pyramid networks-region proposal network) for lung nodule detection have been demonstrated via attention mechanism and feature pyramid network.Method The detection performance has been improved for an end-to-end lung nodule detection model training via integrating nodule candidate detection and false positive reduction into a model for joint training.At the beginning, the lung parenchyma has been segmented to form the image dataset for training and testing via threshold and morphology.The designated nodule detection model has been based on the region proposal network(RPN) of the faster R-CNN(region convolutional neural network) network.The network model has been illustrated based on the U-Net network structure using low-dose chest CT thin-slice plain scan images as input and outputs candidate nodules position and probability information.Next, the channel-spatial attention mechanism in multi-layers network has been designed in the feature extraction network via the backbone network—ResNet in terms of the semantic and spatial feature compensation mechanism and the amount of extracted feature information.Multi-layers features have been refined to retain feature information each.The integration of lower and higher dimensional features have been spatially interpreted to obtain feature information with more contextual semantics and spatial location information.The semantic information has been qualified via the top-layer of feature map for prediction though the losses of spatial information extracted.The 3D spatial information in CT sequence has not been be fully
作者 张福玲 张少敏 支力佳 周涛 Zhang Fuling;Zhang Shaomin;Zhi Lijia;Zhou Tao(School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China;Medical Imaging Center,Ningxia Hui Autonomous Region People’s Hospital,Yinchuan 750000,China;The Key Laboratory of Images&Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China)
出处 《中国图象图形学报》 CSCD 北大核心 2021年第9期2156-2170,共15页 Journal of Image and Graphics
基金 国家自然科学基金项目(61561002,62062003,61962002) 宁夏自然科学基金项目(2020AAC03213,2021AAC03198) “图像与智能信息处理创新团队”国家民委创新团队项目(PY1606,PY1905) 北方民族大学“计算机视觉与虚拟现实”创新团队项目 北方民族大学一般科研项目(2021XYZJK04) 宁夏医学影像临床研究中心创新平台建设项目(2018DPG05006)。
关键词 肺结节检测 注意力机制 特征金字塔网络(FPN) 非显著性目标检测 十折交叉验证 pulmonary nodule detection attention mechanism feature pyramid network(FPN) insignificant target detection 10-fold cross-validation
  • 相关文献

参考文献9

二级参考文献29

共引文献47

同被引文献86

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部