期刊文献+

基于改进的卷积神经网络LeNet-5乳腺疾病诊断方法 被引量:3

Diagnosis of breast disease based on an improved convolution neural network LeNet-5
下载PDF
导出
摘要 针对计算机辅助乳腺疾病诊断方法准确率低、耗时长等问题,提出一种基于改进的卷积神经网络(CNN)的乳腺疾病诊断方法.该方法从以下3个方面做了改进:(1)设计双通道卷积神经网络来解决单通道特征提取不充分的问题;(2)采用Dropout技术有效地防止过拟合现象;(3)采用支持向量机(SVM)代替传统的Softmax分类器以减少运算量,提高运算速度.测试结果表明:所提出的分类模型平均准确率高达92.31%,平均训练时间为968s,充分验证了该方法的有效性. Aiming at the problem of low accuracy and long time consuming in computer-aided breast disease diagnosis,a new breast disease diagnosis method based on improved Convolutional Neural Network(CNN)is proposed.This method has been improved from the following three aspects:first,the design of a double channel convolutional neural network to solve the problem of inadequate single channel feature extraction;secondly,using Dropout technology to effectively prevent overfitting;finally,the support vector machine(Support Vector Machine,SVM softmax)to replace the traditional classifier in order to reduce computation to improve the speed of operation.After testing,the average accuracy of the proposed classification model is up to 92.31% and the average training time is 968 s,which fully validates the effectiveness of this method.
作者 赵京霞 钱育蓉 张猛 杜娇 ZHAO Jing-xia;QIAN Yu-rong;ZHANG Mcng;DU Jiao(School of Software,Xinjiang Univewity,Urumqi 830008,China)
出处 《东北师大学报(自然科学版)》 CAS 北大核心 2019年第2期65-70,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(61562086) 新疆维吾尔自治区教育厅项目(XJEDU2016S035)
关键词 计算机辅助诊断 卷积神经网络 双通道 医学图像分类 computer aided diagnosis convolutional neural network double channel medical image classification
  • 相关文献

参考文献13

二级参考文献61

  • 1魏伟一,张贵仓,张国治.一种基于图像熵及分形维矢量的图像检索技术[J].西北师范大学学报(自然科学版),2006,42(1):32-35. 被引量:5
  • 2王建宇,张峰,周献中,史迎春,骆文.利用小波变换和K均值聚类实现字幕区域分割[J].计算机辅助设计与图形学学报,2006,18(10):1508-1512. 被引量:10
  • 3田岩岩,齐国清.基于小波变换模极大值的边缘检测方法[J].大连海事大学学报,2007,33(1):102-106. 被引量:29
  • 4Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009. 被引量:9
  • 5NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:66
  • 6Pisano E D, Gatsonis C, Hendrick E, et al. Diagnostic per?formance of digital versus film mammography for breast-can?cer screening[J]. The New EnglandJournal of Medicine, 2005, 353(17): 1773-1783. 被引量:1
  • 7Eltonsy N H, Tourassi G D, Elmaghraby A S. A concentric morphology model for the detection of masses in mammogra?phy[J]. IEEE Transactions on Medical Imaging, 2007, 26(6): 880-889. 被引量:1
  • 8Wang Z Q, Yu G, Kang Y, et al. Breast tumor detection in dig?ital mammography based on extreme learning machine[J]. Neurocomputing, 2014,128(3): 175-184. 被引量:1
  • 9Yin F F, Giger M L, Doi K, et al. Computerized detection of masses in digital mammograms: analysis of bilateral subtrac- tion images[J]. Medical Physics, 1991, 18(5): 955-963. 被引量:1
  • 10Sallam M Y, Bowyer K W. Registration and difference analysis of corresponding mammogram images[J]. Medical Image Analysis, 1999,3(2): 103-118. 被引量:1

共引文献1831

同被引文献33

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部