期刊文献+

基于多传感器信息的人体下肢步态识别 被引量:3

Gait Recognition of Human Lower Limbs Based on Multi-sensor in Formation
下载PDF
导出
摘要 为准确识别人体下肢步态运动,设计一种识别下肢步态摆动相和支撑相的方法。通过4个姿态传感器和足底压力鞋垫采集人体下肢角度信息和足底压力信息,将数据信息进行归一化、比例化处理后提取特征;利用模糊原理将传感器信息进行模糊化,将双腿步态划分为4种情况;利用MATLAB对下肢角度信息和足底压力信息采用不同核函数的支持向量机(support vector machine,SVM)进行识别;以同一人在不同步态速率下直线行走的步态和不同身高腿长的人在速率为0.6 m/s下的直线行走的步态进行实验。结果表明:该算法是有效、适用的,识别准确率均在90%以上。 To accurately identify human lower limb gait movements,a method to identify the swing phase and support phase of lower limb gait is designed.The human lower limb angle information and plantar pressure information are collected through four posture sensors and plantar pressure insoles,and the data information is normalized and scaled to extract features;the sensor information is fuzzified by using the fuzzy principle to classify the gait of both legs into four cases;the support vector machine(SVM)with different kernel functions is used to recognize the lower limb angle information and plantar pressure information using MATLAB;the same gait of a person walking in a straight line at different gait rates and the gait of a person of different height and leg length walking in a straight line at a rate of 0.6 m/s were experimented.The results show that the algorithm is effective and applicable,and the average recognition accuracy is above 90%in all cases.
作者 吕佳乐 高学山 石永杰 刘欢 吕鹏飞 赵鹏 车红娟 郝亮超 牛军道 LYU Jiale;Gao Xueshan;Shi Yongjie;Liu Huan;LYU Pengfei;Zhao Peng;Che Hongjuan;Hao Liangchao;Niu Jundao(School of Electrical&Information Engineering,Guangxi University of Science&Technology,Liuzhou 545000,China;School of Mechatronical Engineering,Beijing Institute of Technology,Beijing 100081,China;School of Mechanical&Transportation Engineering,Guangxi University of Science&Technology,Liuzhou 545000,China)
出处 《兵工自动化》 2021年第10期85-90,共6页 Ordnance Industry Automation
基金 中国老年失能预防与干预管理网络及技术研究(2020YFC2008503)。
关键词 下肢步态 模糊化 支持向量机 步态识别 lower limb gait fuzzification SVM gait recognition
  • 相关文献

参考文献13

  • 1姚健..基于足底压力测量的步态识别与预测[D].西南交通大学,2017:
  • 2马乐,周平,王美玲,陈淑艳,张鹏万.下肢康复外骨骼机器人步态相位切换研究[J].制造业自动化,2017,39(8):43-47. 被引量:6
  • 3翟文婷..利用加速度传感器实现人体步态识别[D].沈阳工业大学,2013:
  • 4邢秀玉..基于加速度传感器的人体步态模式分类研究[D].中北大学,2013:
  • 5李洪武..下肢助力外骨骼人机交互力传感器设计及控制方法研究[D].哈尔滨工业大学,2018:
  • 6周洁..基于姿态与压力信息的步态识别方法[D].西南交通大学,2016:
  • 7王昕..面向下肢康复机器人的运动意图识别技术研究[D].浙江大学,2019:
  • 8杨金江..助力型下肢外骨骼机器人多信号融合感知系统研究[D].浙江大学,2017:
  • 9马乐..下肢康复外骨骼机器人感知与交互方法研究[D].合肥工业大学,2018:
  • 10赵瑜,周波,綦俊峰,刘雨聪,王平.基于双阶卡尔曼滤波的九轴姿态融合算法研究[J].电子世界,2019,0(7):98-99. 被引量:4

二级参考文献32

  • 1Poppe R. A survey on vision-based human action recognition [ J ]. Image and Vision Computing,2010,28 (6) : 976 - 990. 被引量:1
  • 2Ynag X,Zhou Y,Zhang T, et al. Garbor phase based gait rec- ognition [ J ]. Electronics Letters,2008,44 (10) : 620 - 621. 被引量:1
  • 3Matovski D S, Nixon M S, Mahmoodi S, et al. The effect of time on gait recognition performance [ J ]. IEEE Transactions on Information Forensics and Security, 2012,7 ( 2 ) : 543 - 552. 被引量:1
  • 4Boulgouris N V, Chi Z X. Gait recognition using radon trans- form and linear discriminant analysis[ J]. IEEE Transactions on Image Processing, 2007,16 ( 3 ) : 731 - 740. 被引量:1
  • 5Kale A ,Sundaresan A, Rajagopalan A N, et al. Identification of humans using gait [ J ]. IEEE Transactions on hnage Pro- cessing, 2004,13 ( 9 ) : 1163 - 1173. 被引量:1
  • 6Zheng S,Zhang J G, Huang K Q, et al. Robust view transfor- mation model for gait recognition [ C ]//Proceedings of the 18th IEEE International Conference on Image Processing. 2011:2073 - 2076. 被引量:1
  • 7Bouchrika I, Nixon M S. Model-based feature extraction for gait analysis and recognition [ M ]//Computer Vision/Com- puter Graphics Collaboration Techniques. Springer Berlin Heidelberg, 2007 : 150 - 160. 被引量:1
  • 8Gale A G, Salankar S S. A review on advance methods of fea- ture extraction in iris recognition system [ C ]//Proceedings ofInternational Conference on Advances in Engineering and Technology. 2014 : 65 - 70. 被引量:1
  • 9Hsu C W, Lin C J. A comparison of methods for multielass support vector machines ~ J J. IEEE Transactions on Neural Networks ,2002,13 (2) :415 - 425. 被引量:1
  • 10Keerthi S S, Shevade S K, Bhattaeharyya C, et al. Improve- ments to Platt's SMO algorithm for SVM classifier design E J ]. Neural Computation,2001,13 ( 3 ) : 637 - 649. 被引量:1

共引文献12

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部