期刊文献+

基于深度自编码器的移动通信基站异常度检测 被引量:2

Anomaly Detection of Mobile Communication Base Station Based on Deep Auto-Encoder
下载PDF
导出
摘要 传统的运维模式已无法满足4G以及5G网络运维的需要,运用人工智能和大数据等新技术,实现主动运维、快速运维和精准运维已成为网络运维发展的新趋势。基站异常检测是新型运维模式的一项重要内容,因此提出一种基于深度自编码器的基站异常度检测方法。首先对故障告警、相关性能KPI以及OMC运维指标分别建立稀疏降噪自编码器模型,然后综合三个模型的结果,对基站进行全面的异常度评测。该方法具有准确性高、评测粒度细、容易实施等特点,经过实际的试点应用,验证了该方法的有效性,为后续网络运维部门进行基站精准巡检以及进一步实现智能运维提供了可靠的数据支撑。 The traditional operation and maintenance(O&M)mode has not been able to meet the requirements of 4G and 5G network O&M.It has become a new development trend of network O&M with new technologies,such as artificial intelligence,big data,to realize active O&M,fast O&M and precise O&M.Base station anomaly detection is an important part of the new O&M mode,and this paper propose an anomaly detection method for base stations based on deep auto-encoder.Firstly,three sparse de-noising auto-encoder(SDAE)models are established with fault alarms,key performance indicators(KPIs)and OMC O&M indicators,respectively.Then a comprehensive anomaly evaluation of the base station is given on the combination of the results of the three models.The proposed method has the characteristics of high accuracy,fine evaluation granularity,and easy implementation.Through pilot applications,the effectiveness of the method is verified.Therefore,it provides reliable data support to precise inspection of base station and further realization of intelligent O&M.
作者 马敏 贾子寒 王磊 MA Min;JI AN Zihan;WANG Lei(Shaanxi Branch,China Mobile Group Design Institute Co.,Ltd.,Xi'an 710065,China;China Mobile Group Design Institute Co.,Ltd.,Beijing 100080,China)
出处 《移动通信》 2021年第5期124-129,134,共7页 Mobile Communications
关键词 基站异常检测 深度学习 自编码器 稀疏降噪 基站精准巡检 智能运维 base station anomaly detection deep learning auto-encoder sparse de-noising base station precise inspection intelligent operation and maintenance
  • 相关文献

参考文献9

二级参考文献38

共引文献183

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部