期刊文献+

Long Text Classification Algorithm Using a Hybrid Model of Bidirectional Encoder Representation from Transformers-Hierarchical Attention Networks-Dilated Convolutions Network 被引量:1

下载PDF
导出
摘要 Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.
作者 ZHAO Yuanyuan GAO Shining LIU Yang GONG Xiaohui 赵媛媛;高世宁;刘洋;宫晓蕙(College of Information Science and Technology,Donghua University,Shanghai 201620,China;Engineering Research Center of Digitized Textile&Apparel Technology,Ministry of Education,Donghua University,Shanghai 201620,China)
出处 《Journal of Donghua University(English Edition)》 CAS 2021年第4期341-350,共10页 东华大学学报(英文版)
基金 Fundamental Research Funds for the Central University,China(No.2232018D3-17)。
  • 相关文献

参考文献3

二级参考文献28

共引文献41

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部