期刊文献+

Enhanced Mask R-CNN for herd segmentation

原文传递
导出
摘要 Livestock image segmentation is an important task in the field of vision and image processing.Since utilizing the concentration of forage in the grazing area with shielding the surrounding farm plants and crops is necessary for making effective cattle ranch arrangements,there is a need for a segmentation method that can handle multiple objects segmentation.Moreover,the indistinct boundaries and irregular shapes of cattle bodies discourage the application of the existing Mask Region-based Convolutional Neural Network(Mask R-CNN)which was primarily modeled for the segmentation of natural images.To address this,an enhanced Mask R-CNN model was proposed for multiple objects instance segmentation to support indistinct boundaries and irregular shapes of cattle bodies for precision livestock farming.The contributions of this method are in multiple folds:1)optimal filter size smaller than a residual network for extracting smaller and composite features;2)region proposals for utilizing multiscale semantic features;3)Mask R-CNN’s fully connected layer integrated with sub-network for an enhanced segmentation.The experiment conducted on pre-processed datasets produced a mean average precision(mAP)of 0.93,which was higher than the results from the existing state-of-the-art models.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第4期238-244,共7页 国际农业与生物工程学报(英文)
  • 相关文献

参考文献6

二级参考文献126

  • 1田富洋,王冉冉,刘莫尘,王震,李法德,王中华.基于神经网络的奶牛发情行为辨识与预测研究[J].农业机械学报,2013,44(S1):277-281. 被引量:34
  • 2张海亮,何东健.肉牛体形参数计算机视觉检测[J].农业机械学报,2006,37(2):164-167. 被引量:5
  • 3MAZRIER H, TAL S,AIZINBUD E,et al. A field investigation of the use of the pedometer for the early detection of lameness incattle[ J]. The Canadian Veterinary Journal, 2006,47(9) : 883. 被引量:1
  • 4CHAPINAL N,PASSILLE AMD, PASTELL M, et al. Measurement of acceleration while walking as an automated method for gaitassessment in dairy cattlef J]. Journal of Dairy Science, 2011 , 94(6) : 2895 -2901. 被引量:1
  • 5MUNKSGAARD L, VAN REENEN C G, BOYCE R. Automatic monitoring of lying, standing and walking behavior in dairy cattle\_C~\ //ADSA/ASAS 2006 Annual Meeting, 2006. 被引量:1
  • 6THORUP V M , MUNKSGAARD L, ROBERT P E, et al. Lameness detection via leg-mounted accelerometers on dairy cows on fourcommercial farms [J]. Animal, 2015 , 9( 10) ; 1704 - 1712. 被引量:1
  • 7YUNTA C, GUASCH I,BACH A. Short communication : Lying behavior of lactating dairy cows is influenced by lamenessespecially around feeding time[ J]. Journal of Dairy Science, 2012 , 95(11) : 6546 - 6549. 被引量:1
  • 8RAJKONDAWAR P G, LEFCOURT A M,NEERCHAL N K, et al. The development of an objective lameness scoring system fordairy herds : pilot study [ J]. Transactions of the ASABE , 2002 , 45(4) : 1123 - 1125. 被引量:1
  • 9RAJKONDAWAR P G, LIU M , DYER R M , et al. Comparison of models to identify lame cows based on gait and lesion scores,and limb movement variables[ J]. Journal of Dairy Science,2006 , 89( 11 ) : 4267 ~ 4275. 被引量:1
  • 10PASTELL M E,KUJALA M. A probabilistic neural network model for lameness detection[ J]. Journal of Dairy Science, 2007,90(5) : 2283 -2292. 被引量:1

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部