摘要
【目的】能源消耗和环境问题是世界范围的研究热点,第二产业(主要是工业)的碳排放影响温室效应尤其是当今社会关注的焦点。【方法】根据IPCC法和统计年鉴,以甘肃省为例,测算2000—2017年第二产业碳排放量和排放强度,并借助脱钩分析、碳承载力和碳赤字跟踪碳排放的动态变化趋势,选取灰色关联模型分析第二产业碳排放的驱动因素,利用灰色系统预测2018—2019的碳排放量和排放强度。【结果】甘肃省产业为"二、三、一"结构,工业占能源总消耗量的73%。从时间来看,2000—2017年间第二产业碳排放量呈逐年增长趋势,平均碳排放量为11367.29万t;碳排放强度却呈逐年下降趋势,平均值为8.68万t/亿元;2018—2019预测结果符合趋势规律。【结论】碳排放量与GDP之间呈弱脱钩的态势,脱钩指数有减小趋势;碳承载力增长趋势明显且趋于稳定,19年间碳承载力增长了21.95%,从2011年开始出现碳赤字,并呈现先增加后减小趋势。从地区来看,嘉峪关等5市属于碳排放高强度区,兰州市的碳排放量贡献率最大,平凉市未来环境压力相对较小。从驱动因素分析,煤炭和石油是工业碳排放的主体,关联度最高,关联系数为0.88和0.80。最后提出相应的低碳节能减排政策建议,以期为政府决策提供科学依据。
【Objective】The problem of energy consumption and environmental deterioration is becoming more and more serious,especially where the greenhouse of second industrial production has become the attention focus of today’s society.【Method】Therefore,according to the statistical yearbook and the IPCC method,the carbon emissions and emission intensity of the secondary industry in 2000-2017 and local cities of Gansu Province were calculated.The dynamic changes of carbon carrying capacity,carbon deficit and decoupling were analyzed.The impact of carbon emissions in Gansu province factors was established by the grey relational analysis model and forecasting carbon emissions and emission intensity in 2018-2019 using the gray system.【Result】The industry structure of Gansu Province was‘2,3,1’and 73% of total energy consumption was in the industry.From the time perspective,the carbon emissions of the secondary industry showed an increasing trend from 2000 to 2017,with an average of 113.67 million tons;the carbon emission intensity showed a downward trend,with an average of 8.68 million tons/billion yuan.The forecast results from 2018 to 2019 conformed to the trend.【Conclusion】The carbon emissions and GDP are weakly decoupled,and the decoupling index has a decreasing trend.The carbon carrying capacity is slightly obviously increasing and relatively stable,and has increased by 21.95%in 19 years.Since 2011,the carbon deficit has appeared and increased first and then decreased.From the space perspective,Jiayuguan and the other five cities belong to high carbon emissions intensity,and Lanzhou has the largest contribution rate of carbon emissions,and the future environmental pressure of Pingliang is relatively small.From the influence factors analysis,coal and oil are the main parts of the industrial carbon emissions,and there is the highest correlation(0.88 and 0.80).
作者
张迪
王彤彤
支金虎
张小平
黄敏洁
ZHANG Di;WANG Tong-tong;ZHI Jin-hu;ZHANG Xiao-ping;HUANG Min-jie(College of Plant Sciences,Tarim University,Xinjiang Alar 843300,China;Southern Xinjiang Oasis Agricultural Resources and Environment Research Center of Tarim University,Xinjiang Alar 843300,China;Chongqing Branch,Changjiang River Scientific Research Institute of Changjiang Water Resources Commission,Chongqing 400026,China;College of Natural Resources and Environment,Northwest A&F University,Shannxi Yangling 712100,China;College of Geographic and Environmental Science,Northwest Normal University,Gansu Lanzhou 730070,China;Xinjiang Production and Construction Corps Seed Management General Station,Xinjiang Urumqi 830011,China)
出处
《西南农业学报》
CSCD
北大核心
2021年第8期1740-1750,共11页
Southwest China Journal of Agricultural Sciences
基金
国家重点研发计划(2017YFC0504300、2017YFD0201900)
环境材料与修复技术重庆市重点实验室开放基金(CEK1805)
塔里木大学研究生科研创新项目(TDGRI201913)。
关键词
碳排放
第二产业
生态经济
驱动因素
灰色关联模型
Carbon emission
Secondary industry
Ecological economy
Driving factors
Grey relational analysis