摘要
在金属矿开采过程中,矿石图像的人工智能分割有着重要作用,但是采场爆堆矿岩分布状况复杂,矿岩图像颗粒粘连严重难以分割。现有的矿岩图像分割方法通常是先利用滤波降噪,再采用分水岭算法分割图像,这种方法存在局限性强和参数调整复杂等问题,不适合用于实际应用。结合矿岩图像特征和矿山实际需求,提出了一种基于U-Net深度卷积网络和OpenCV的矿岩图像分割算法,该算法将深度学习创新应用到矿岩图像分割领域,与最大类间方差法、聚类分析、边缘提取等分割方法相比,该算法分割精度高,分割效果好,并且可以直接获取效果图中矿岩块的数量,极大减少了图像的后续处理工作量。
出处
《采矿技术》
2021年第5期149-152,171,共5页
Mining Technology