期刊文献+

Multi target pigs tracking loss correction algorithm based on Faster R-CNN 被引量:9

原文传递
导出
摘要 In order to solve the problem that target tracking frames are lost during the visual tracking of pigs,this research proposed an algorithm for multi target pigs tracking loss correction based on Faster R-CNN.The video of live pigs was processed by Faster R-CNN to get the object bounding box.Then,the SURF and background difference method were combined to predict whether the target pig will be occluded in the next frame.According to the occlusion condition,the maximum value of the horizontal and vertical coordinate offset of the bounding box in the adjacent two frames of the frame image in continuous N(N is the value of the video frame rate)were calculated.When bounding boxes in a video frame are merged into one bounding box,this maximum value was used to correct the current tracking frame offset in order to achieve the purpose of solving the tracking target loss problem.The experiment results showed that the success rate range of RP Faster-RCNN in the data set was 80%-97% while in term of Faster-RCNN was 40%-85%.And the average center point error of RP Faster-RCNN was 1.46 lower than Faster-RCNN which was about 2.60.The new algorithm was characterized by good robustness and adaptability,which could solve the problem of missing tracking target and accurately track multiple targets when the targets occlude each other.
出处 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第5期192-197,共6页 国际农业与生物工程学报(英文)
基金 The authors acknowledge that this research was financially supported by the National High Technology Research and Development Program of China(2013AA102306).
  • 相关文献

参考文献2

二级参考文献16

共引文献96

同被引文献107

引证文献9

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部