期刊文献+

基于更新分类器的合成孔径雷达图像目标识别 被引量:7

Synthetic Aperture Radar Image Target Recognition Based on Updated Classifier
原文传递
导出
摘要 针对合成孔径雷达(SAR)图像目标识别中的分类决策问题,提出了一种基于更新分类器的新识别方法。该方法用卷积神经网络和稀疏表示分类器作为基础分类器对类别未知的样本进行分类,对两种方法的决策结果进行融合,并判定决策结果的可靠性。将类别可靠的测试样本补充到原始训练样本中以更新分类器,从而获得更可靠的识别结果。基于MSTAR数据集的实验结果表明,相比其他方法,本方法的识别准确率更高。 To address the classification decision problems in synthetic aperture radar(SAR)image target recognition,a new recognition method based on updated classifier is proposed in this paper.The method uses a convolutional neural network and a sparse representation classifier as the basic classifier to classify samples with unknown categories.The decision results of the two methods are fused,and the reliability of the fused decision results is then determined.Subsequently,test samples with reliable categories are added to the original training samples to update the classifier to obtain more reliable recognition results.The experimental results based on the MSTAR data set show that the recognition accuracy of the method is higher than those of the other methods.
作者 张振中 Zhang Zhenzhong(College of Equipment Management and Support,Engineering University of PAP,Xi'an,Shaanxi 710086,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第14期226-233,共8页 Laser & Optoelectronics Progress
基金 广东省科学技术委员会基金(cstc2015jcsfA90002)。
关键词 图像处理 合成孔径雷达 目标识别 卷积神经网络 稀疏表示分类器 更新分类器 image processing synthetic aperture radar target recognition convolutional neural network sparse representation classifier updated classifier
  • 相关文献

参考文献8

二级参考文献58

  • 1徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 2Ross T D,Bradley J J,Hudson L J. SAR ATR-so what's the problem? an MSTAR perspective[A].1999.662-672. 被引量:1
  • 3Novak L M,Owirak G J,Irving W W. Performance of 10-and 20-target MSE classifiers[J].IEEE Transactions on Aerospace and Electronic Systems,2000,(04):1279-1289. 被引量:1
  • 4Zhao Q,Principe J C. Support vector machine for SAR automatic target recognition[J].IEEE Transactions on Aerospace and Electronic Systems,2001,(02):643-654. 被引量:1
  • 5Candes E J,Rombcrg J,Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083. 被引量:1
  • 6Candes E J,Wakin M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):21-30.doi:10.1109/MSP.2007.914731. 被引量:1
  • 7Donoho D L. Compressed sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582. 被引量:1
  • 8Wright J,Yang A Y,Ganesh A. Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,(02):210-227.doi:10.1109/TPAMI.2008.79. 被引量:1
  • 9Li S H,Xue Y,Carin L. Bayesian compressive sensing[J].IEEE Transactions on Signal Processing,2008,(06):2346-2356. 被引量:1
  • 10Babacan S D,Monila R. Bayesian compressive sensing using laplace priors[J].IEEE Transactions on Image Processing,2010,(01):53-63. 被引量:1

共引文献122

同被引文献113

引证文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部