摘要
轮式履带式车辆目标分类是低分辨雷达地面目标识别研究领域的一个难点。该文基于微多普勒效应原理建立了轮式履带式车辆的雷达回波模型,针对轮式履带式车辆微多普勒调制的不同,提出了一种基于CLEAN算法的特征提取方法,提取了一种描述目标多普勒谱能量分布的能量比特征。基于实测数据使用相关向量机(RVM)和支持向量机(SVM)的识别结果表明该特征具有较好的识别性能,同时对目标速度具有稳健性。
Classification of track vehicle and wheel vehicle by using low-resolution radar echo is a challenging problem in radar ground target automatic classification community. This paper establishes an echo signal model for track vehicle and wheel vehicle based on micro-doppler effect. According to the echo signal model, a new feature extraction method is proposed by using the CLEAN algorithm. The feature reveals the energy distribution of the target doppler spectrum. The measured data results based on Relevance Vector Machine (RVM) and Support Vector Machine (SVM) show the proposed feature can not only achieve good classification performance, but also be robust to the target velocity.
出处
《电子与信息学报》
EI
CSCD
北大核心
2010年第12期2848-2853,共6页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60772140
60901067)
中央高校基本科研业务费专项资金联合资助课题
关键词
雷达目标识别
微多普勒
CLEAN算法
相关向量机
支持向量机
Radar automatic target recognition
Micro-Doppler effect
CLEAN algorithm
Relevance Vector Machine (RVM)
Support Vector Machine (SVM)