期刊文献+

基于微多普勒特征的地面目标分类 被引量:27

Ground Targets Classification Based on Micro-Doppler Effect
下载PDF
导出
摘要 轮式履带式车辆目标分类是低分辨雷达地面目标识别研究领域的一个难点。该文基于微多普勒效应原理建立了轮式履带式车辆的雷达回波模型,针对轮式履带式车辆微多普勒调制的不同,提出了一种基于CLEAN算法的特征提取方法,提取了一种描述目标多普勒谱能量分布的能量比特征。基于实测数据使用相关向量机(RVM)和支持向量机(SVM)的识别结果表明该特征具有较好的识别性能,同时对目标速度具有稳健性。 Classification of track vehicle and wheel vehicle by using low-resolution radar echo is a challenging problem in radar ground target automatic classification community. This paper establishes an echo signal model for track vehicle and wheel vehicle based on micro-doppler effect. According to the echo signal model, a new feature extraction method is proposed by using the CLEAN algorithm. The feature reveals the energy distribution of the target doppler spectrum. The measured data results based on Relevance Vector Machine (RVM) and Support Vector Machine (SVM) show the proposed feature can not only achieve good classification performance, but also be robust to the target velocity.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第12期2848-2853,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60772140 60901067) 中央高校基本科研业务费专项资金联合资助课题
关键词 雷达目标识别 微多普勒 CLEAN算法 相关向量机 支持向量机 Radar automatic target recognition Micro-Doppler effect CLEAN algorithm Relevance Vector Machine (RVM) Support Vector Machine (SVM)
  • 相关文献

参考文献12

  • 1Chen V C,Li F,and Ho S S,et al..Analysis of Micro-Doppler signatures[J].IEEE Proceedings Radar,Sonar & Navigation,2003,150(4):271-276. 被引量:1
  • 2Chen V C,Li F,and Ho S S,et al..Micro-Doppler effect in radar:phenomenon,model,and simulation study[J].IEEE Transactions on Aerospace and Electronic System,2006,42(1):2-21. 被引量:1
  • 3Nanzer J A and Rogers R L.Bayesian classification of humans and vehicles using Micro-Doppler signals from a scanning-beam radar[J].IEEE Microwave and Wireless Components Letters,2009,19(5):338-340. 被引量:1
  • 4李金梁,王雪松,刘阳,刘进,孟刚,王涛.雷达目标旋转部件的微Doppler效应[J].电子与信息学报,2009,31(3):583-587. 被引量:17
  • 5孙慧霞,刘峥,薛宁.自旋进动目标的微多普勒特征分析[J].系统工程与电子技术,2009,31(2):357-360. 被引量:12
  • 6Kim Y and Ling H.Human activity classification based on Micro-Doppler signatures using a support vector machine[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(5):1328-1337. 被引量:1
  • 7Stove A G and Sykes S R.A Doppler-based automatic target classifier for a battlefield surveillance radar[C].2002 International Radar Conference,Edinburgh,UK,Oct 15-17,2002:419-423. 被引量:1
  • 8冀振元,孟宪德.战场侦察雷达目标的自动识别[J].哈尔滨工业大学学报,2001,33(6):830-833. 被引量:11
  • 9Tsao J and Steinberg B D.Reduction of sidelobe and speckle artifacts in microwave imaging:the CLEAN technique[J].IEEE Transactions on Antennas and Propagation,1988,36(4):543-556. 被引量:1
  • 10Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167. 被引量:1

二级参考文献21

共引文献37

同被引文献219

引证文献27

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部