期刊文献+

数据驱动下的用户异常用电行为检测方法 被引量:7

Detection method for abnormal power consumption behavior of power users
下载PDF
导出
摘要 针对智能电网条件下用户异常用电行为问题,提出了一种基于主成分分析和深度循环神经网络(PCA-RNN)的异常用电行为检测方法。该方法首先利用核主成分分析对电力负荷数据进行降维处理,生成主成分特征子集,然后基于长短记忆网络(LSTM)和门控循环单元(GRU)构建深度循环神经网络(RNN)模型,检测异常用电行为。实验结果表明,该方法能够有效检测出异常用电行为,且具有较高的准确率和鲁棒性。 In order to solve the problem of abnormal power consumption behavior of users in smart grid,a detection method of abnormal power consumption behavior based on principal component analysis and deep cyclic neural network(PCA-RNN)is proposed.Firstly,kernel principal component analysis is used to reduce the dimension of power load data,and principal component feature subset is generated.Based on long short memory network(LSTM)and gating cycle unit(GRU),a deep cycle neural network(RNN)model is constructed to detect abnormal power consumption behavior.The experiment results show that the method can effectively detect abnormal electrical behavior,and has high accuracy and robustness.
作者 赵玉谦 赵彩霞 张倚天 ZHAO Yu-qian;ZHAO Cai-xia;ZHANG Yi-tian(State Grid Henan Skills Training Center,Zhengzhou 450051,China)
出处 《信息技术》 2021年第8期127-132,共6页 Information Technology
关键词 智能电网 电力数据 异常行为检测 主成分分析 深度循环神经网络 smart grid power data abnormal behavior detection principal component analysis deep cyclic neural network
  • 相关文献

参考文献10

二级参考文献110

  • 1周家帅,王琦,高军.一种基于动态划分的MapReduce负载均衡方法[J].计算机研究与发展,2013,50(S1):369-377. 被引量:11
  • 2Q/GDW 373-2009,电力用户用电信息采集系统功能规范[S]. 被引量:15
  • 3HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001.. 被引量:149
  • 4Q/GDW 354-2012,智能电能表功能规范[S]. 被引量:2
  • 5Mastoid Amine S,Wallenberg B F.Toward a smart grid:powerdelivery for the 21st century[J].Power and Energy Magazine,IEEE,2005,3(5):34-41. 被引量:1
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Operating Systems Design : Implementation, 2004, 51(1) : 147-152. 被引量:1
  • 7Shvachko K, Kuang H, Radia S, et al. The hadoop distributed file system//Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). Nevada, USA, 2010:1-10. 被引量:1
  • 8Rasmussen A, Conley M, Kapoor R, et at. Themis: An I/O efficient MapReduce//Proceedings of the ACM Symposium on Cloud Computing (SOCC'12). San Jose, USA, 2012. 被引量:1
  • 9Ren K, Kwon Y, Balazinska M, Howe B. Hadoop's adolescence: A comparative workload analysis from three research clusters. Carnegie Mellon University (CMU), USA: Technical Report CMU-PDL-12-106, 2012. 被引量:1
  • 10Lin J, et al. The curse of Zipf and limits to parallelization: A look at the stragglers problem in MapReduee//Proceedings of the 7th Workshop on Large-Scale Distributed Systems for Information Retrieval. Boston, USA, 2009. 被引量:1

共引文献278

同被引文献73

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部