期刊文献+

基于深度学习的目标跟踪算法研究现状及发展趋势 被引量:1

Research Status and Development Trend of Target Tracking Algorithm Based on Deep Learning
下载PDF
导出
摘要 近十年来,深度学习由于其优越的性能,已经逐渐应用于各个领域。在目标跟踪领域,基于深度学习的方法也取得了巨大的成功。文章主要介绍基于深度学习的目标跟踪算法研究现状及发展趋势。首先,介绍了视觉目标跟踪传统算法。然后,对基于深度学习的目标跟踪算法进行分类,并进行问题分析。最后,对基于深度学习的目标跟踪算法的发展趋势进行预测。 In recent ten years,deep learning has been gradually applied in various fields because of its superior performance.In the field of target tracking,the method based on deep learning has also achieved great success.This paper mainly introduces the research status and development trend of target tracking algorithm based on deep learning.Firstly,the traditional algorithms for visual target tracking are introduced.Then,the target tracking algorithms based on deep learning are classified and the problems are analyzed.Finally,the development trend of target tracking algorithm based on deep learning is predicted.
作者 张莹杰 ZHANG Yingjie(Zhanjiang University of Science and Technology,Zhanjiang 524094,China)
机构地区 湛江科技学院
出处 《现代信息科技》 2021年第8期82-85,共4页 Modern Information Technology
关键词 目标跟踪 深度学习 孪生网络 相关滤波 target tracking deep learning siamese network correlation filtering
  • 相关文献

参考文献5

二级参考文献26

  • 1魏洁英,卢志刚,郑伟,张建红,张海军.蛇形机动目标建模[J].火力与指挥控制,2012,37(S1):22-24. 被引量:4
  • 2Yilmaz A,Javed O,Shah M. Object Tracking:A Survey[J].{H}ACM COMPUTING SURVEYS,2006. 被引量:1
  • 3Marron M,Garcia J C,Sotelo M A. Tracking Multiple Objects Using a Kalman Filter and a Probabilistic Association Process[A].Vigo,Spain,2007.2135-2138. 被引量:1
  • 4Reid D B. An Algorithm for Tracking Multiple Targets[J].{H}IEEE Transactions on Automatic Control,1979,(06):843-854. 被引量:1
  • 5Pietzsch S,Vu T D,Burlet J. Results of a Precrash Application Based on Laser Scanner and Short-Range Radars[J].IEEE Trans on Intelligent Transportation Systems,2009,(04):584-593. 被引量:1
  • 6Salari V,Sethi I K. Feature Point Correspondence in the Presence of Occlusion[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,(01):87-91. 被引量:1
  • 7Sethi I K,Jain R. Finding Trajectories of Feature Points in a Monocular Image Sequence[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,(01):56-73. 被引量:1
  • 8Veenman C J,Reinders M J T,Backep E. Resolving Motion Correspondence for Densely Moving Points[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,(01):54-72. 被引量:1
  • 9Andrey C,Andrey L. Tracking Feature Points:Dynamic Programming Algorithm[A].Trondheim,Norway,2009.1032-1037. 被引量:1
  • 10王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56

共引文献31

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部