期刊文献+

基于点对矢量场的动态背景下运动目标跟踪算法研究 被引量:2

The Moving Target Tracking Algorithm in Dynamic Background Based on the Vector Field of Point Pair
下载PDF
导出
摘要 动态背景下的运动目标跟踪算法一直是计算机视觉领域的研究热点。针对动态背景下的运动目标跟踪,提出一种基于点对矢量场的运动目标跟踪算法。首先,提取出运动目标身上的点对特征点。然后根据灰度、梯度方向差和点对距离的一致性对运动目标的特征点进行匹配,并根据匹配点对构建点对矢量场。最后,根据点对矢量场实现对运动目标的跟踪。实验结果表明,该算法对动态场景下的运动目标跟踪具有一定的有效性。 Moving object tracking algorithm based on dynamic background has been a hot research topic in the field of computer vision. For moving object tracking in dynamic background, presents a new algorithm of moving object tracking based on the vector field of point pair. Firstly, extracts the point pair of the moving objects. Then, matches the feature points of moving objects according to the consistency of gray scale, gradient direction difference and distance of the point pair. And the vector field is constructed according to the matching points. Fi- nally, tracking of moving objects based on the vector field of point pair. Experimental results show that the proposed algorithm is effective for the moving target tracking in dynamic scenes.
作者 彭端
出处 《现代计算机》 2016年第20期11-14,共4页 Modern Computer
关键词 目标跟踪 点对 矢量场 动态背景 Target Tracking Point Pair Vector Field Dynamic Background
  • 相关文献

参考文献7

二级参考文献51

  • 1赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:84
  • 2江志军,易华蓉.一种基于图像金字塔光流的特征跟踪方法[J].武汉大学学报(信息科学版),2007,32(8):680-683. 被引量:35
  • 3KASS M, WITKIN A . Snakes .. active contour models[J].International J of Computer Vision, 1988,1:321 -331. 被引量:1
  • 4Toshev A,Makadia A,Daniilidis K.Shape-based object recog- nition in videos using 3D synthetic object models[C]//2009 IEEE Conference on Computer Vision and Pattern Recogni- tion, 2009 : 288-295. 被引量:1
  • 5Lucas B D,Kanade T.An iterative image registration tech- nique with an application to stereo vision[C]//Proceedings of Imaging Understanding Workshop.USA: Morgan Kaufmann Publishers Inc, 1981 : 121-130. 被引量:1
  • 6McCane B,Novins K.On benchmarking optical flow[J].Com- puter Vision and Image Understanding, 2001,84( 1 ) : 126-143. 被引量:1
  • 7Horn K P, Schunck G.Determining optical flow[J].Artificial Intelligence, 1981,17( 1 ) : 185-203. 被引量:1
  • 8Tao M,Bai Jiamin.SimpleFlow:a non-iterative,sublinear opti- cal flow algorithm[J].Computer Graphics Forum, 2012,31 (2) :345-353. 被引量:1
  • 9Lowe D G.Distinctive image features from scale-invariant key- points[J].International Journal of Computer Vision, 2004, 60 (2):91-110. 被引量:1
  • 10Gauglitz S, Htillerer T.Evaluation of interest point detectors and feature descriptors for visual tracking[J].International Jour- nal of Computer Vision,2011,94(3) :335-360. 被引量:1

共引文献57

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部