摘要
双边恒虚警率(BCFAR)检测算法通过高斯核密度估计器计算出合成孔径雷达(SAR)图像的空间信息,并将它与图像的强度信息相结合得到联合图像以进行目标检测。相较于只使用强度信息来进行目标检测的经典CFAR检测算法,双边CFAR有着更好的检测性能和鲁棒性。然而,在复杂环境下出现连片的高强度异质点时(例如防波堤、方位模糊和幻影等),核密度估计器计算出的空间信息会出现较多误差,这会导致检测结果中出现大量虚警。此外,当遇到相邻像素点间相似度较低的弱目标时,双边CFAR会发生漏检。为了有效改善这些问题,该文设计一种复杂环境下改进的SAR图像双边CFAR舰船检测算法(IB-CFAR)。该文所提IB-CFAR主要分为3个阶段来实现,分别为基于非均匀量化法的强度层级划分、强度-空间域信息融合、杂波截断后的参数估计。基于非均匀量化法的强度层级划分可以提升弱目标的相似度和对比度信息,从而提升舰船检测率。强度-空间域信息融合在于将空间相似度、距离向和强度等信息进行融合,在进一步提升检测率的同时对舰船的结构信息进行精细化描述。杂波截断后的参数估计可以去除背景窗口中连片的高强度异质点,最大限度地保留真实海杂波样本,使参数估计更加精确。最后,根据估计出的参数建立精确的海杂波统计模型以进行CFAR检测。该文使用高分3号和TerraSAR-X数据来验证该算法的有效性和鲁棒性。实验结果表明,所提出的算法在包含较多密集分布的弱目标环境下表现良好,在此类环境下能获得97.85%的检测率和3.52%的虚警率,相比于现有的检测算法,检测率提升了5%,并且虚警率降低了10%,但在弱目标个数较少且背景十分复杂的环境下,则会出现少量虚警。
The Bilateral Constant False Alarm Rate(BCFAR)detection algorithm calculates the spatial information of Synthetic Aperture Radar(SAR)image by the Gaussian kernel density estimator,and combines it with the intensity information of image to obtain the joint image for target detection.Compared with the classical CFAR detection algorithm which uses only intensity information for target detection,bilateral CFAR has better detection performance and robustness.However,with continuous high-intensity heterogeneous points(such as breakwater,azimuth ambiguity and phantom)in a complex environment,spatial information calculated by kernel density estimator will have more errors,which will lead to many false alarms in detection results.In addition,when it comes to a weak target with less similarity between adjacent pixels,it will miss detection.To effectively improve these problems,this paper designs an Improved Bilateral CFAR(IB-CFAR)algorithm in complex environment.The IB-CFAR proposed in this paper is mainly divided into three stages:intensity level division based on the nonuniform quantization method,intensity spatial domain information fusion and parameter estimation after clutter truncation.The intensity level division based on the nonuniform quantization method can improve the similarity and contrast information of weak targets,leading to improved ship detection rate.The information fusion of strength spatial domain is to fuse the spatial similarity,distance direction and strength information,which can further improve the detection rate and describe the ship structure information.Parameter estimation after clutter truncation can remove continuous high-intensity heterogeneous points in the background window and retain the real sea clutter samples to the maximum extent,which makes parameter estimation more accurate.Finally,according to the estimated parameters,an accurate sea clutter statistical model is established for CFAR detection.In this paper,the effectiveness and robustness of the proposed algorithm are verified by
作者
艾加秋
曹振翔
毛宇翔
汪章怀
王非凡
金兢
AI Jiaqiu;CAO Zhenxiang;MAO Yuxiang;WANG Zhanghuai;WANG Feifan;JIN Jing(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230009,China;Intelligent Interconnected Systems Laboratory of Anhui Province(Hefei University of Technology),Hefei 230009,China)
出处
《雷达学报(中英文)》
CSCD
北大核心
2021年第4期499-515,共17页
Journal of Radars
基金
国家自然科学基金(62071164,61701157)
中国博士后科学基金(2020T130165,2018M640581)
中央高校基本科研业务费专项(JZ2020HGTB0012)
安徽省自然科学基金(1808085QF206)。
关键词
SAR图像目标检测
改进的双边CFAR
复杂环境
弱目标
非均匀量化
强度-空间融合域
Synthetic Aperture Radar(SAR)image target detection
Improved Bilateral CFAR
Complex environment
Weak target
Nonuniform quantization
Intensity space fusion domain