期刊文献+

基于深度学习的学生行为分析与教学效果评价 被引量:25

The Students’Learning Behavior Analysis and Teaching Effect Evaluation based on Deep Learning
下载PDF
导出
摘要 利用人工智能开展学生学习行为分析与教学效果评价对改变教学方式具有重要的意义。文章提出了一种基于深度学习的互动课堂学生学习行为分析与教学效果评价LBREM方法,该方法首先通过智能学习平台获取学生学习行为视频信息,然后对视频中的学生表情进行检测与学习行为识别,最后以国际汉语课堂教学为例开展学生学习行为统计分析和建立教学效果评价模型并开展实证研究。实证效果表明,LBREM方法能够快速、准确的识别学习者学习行为和开展教学效果评价,在智慧课堂、远程学习、移动学习、MOOC等智能教育教学评价和个性化推荐中具有重要的借鉴意义。 It is of great significance to use artificial intelligence to analyze students'learning behaviors and evaluate teaching effects for changing teaching methods.A deep learning-based LBREM method for analyzing students'learning behaviors and evaluating teaching effects in interactive classroom is proposed.This method firstly obtains video information of students'learning behaviors through intelligent learning platform,and then detects students'facial expressions and recognizes their learning behaviors in the videos.Finally,taking international Chinese classroom teaching as an example,the author conducts statistical analysis of students'learning behaviors and establishes an evaluation model of teaching effects and carries out an empirical study.The empirical results showed that LBREM method can quickly and accurately identify learners'learning behaviors and carry out teaching effects evaluation,which has important reference significance in intelligent education teaching evaluation and personalized recommendations such as smart classroom,distance learning,mobile learning and MOOC.
作者 周楠 周建设 ZHOU Nan;ZHOU Jian-she(School of Literature,Capital Normal University,Beijing,China 100048;Office of Reserch&International Exchange,Beijing Open University,Beijing,China 100081;China Language Intelligence Research Center,Capital Normal University,Beijing,China 100048)
出处 《现代教育技术》 CSSCI 2021年第8期102-111,共10页 Modern Educational Technology
基金 国家自然科学基金“面向视频大数据的人体行为理解关键技术研究”(项目编号:61871028) 北京市教委-自然科学基金重点项目“基于大数据的学生学习行为分析关键技术研究”(项目编号:KZ201951160050)资助。
关键词 学习行为 教学评价 深度学习 智能教育 learning behavior teaching evaluation deep learning intelligence education
  • 相关文献

参考文献3

二级参考文献73

  • 1高凌飚.关于过程性评价的思考[J].课程.教材.教法,2004,24(10):15-19. 被引量:299
  • 2傅小兰.电子学习中的情感计算[J].计算机教育,2004(12):27-30. 被引量:20
  • 3王岚,王立鹏.基于OCC的Agent情感模型研究[J].微计算机信息,2007,23(02Z):256-258. 被引量:8
  • 4董妍,俞国良.青少年学业情绪问卷的编制及应用[J].心理学报,2007,39(5):852-860. 被引量:358
  • 5Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120. 被引量:1
  • 6Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939. 被引量:1
  • 7Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893. 被引量:1
  • 8Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157. 被引量:1
  • 9Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36. 被引量:1
  • 10Dollar P, Rabaud V, Cottrell G, Belongie S. Behavior recog- nition via sparse spatio-temporal features. In: Proceedings of the 2005 IEEE International Workshop on Visual Surveil- lance and Performance Evaluation of Tracking and Surveil- lance. Beijing, China: IEEE, 2005.65-72. 被引量:1

共引文献237

同被引文献373

引证文献25

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部