期刊文献+

图的多视角一致性稀疏聚类 被引量:2

Multiview consistency sparse clustering for graph
下载PDF
导出
摘要 提出了一种新的面向图的一致性多视角稀疏聚类框架,该方法先将多视角数据分解为一致性与不一致性部分;然后采用相似性度量方法与KNN(K-nearest neighbor)算法对多视角数据进行分解与融合;再运用稀疏表示学习多视角图的一致性相似矩阵,进而通过谱聚类获取聚类结果。最后,设计并实现了一种交替迭代优化算法求解目标函数,并在八个多视角数据集上通过对比实验验证了该方法的有效性。 This paper proposed a new graph-oriented consistent multi-view sparse clustering framework.This method firstly decomposed multi-view data into consistency and inconsistency parts,used similarity measurement method and KNN(K-nearest neighbor)algorithm to decompose and fuse multi-view data,and then used sparse representation to learn the consistent simila-rity matrix of multi-view graphs.Finally,it obtained the clustering results through spectral clustering.In addition,this paper designed and implemented an alternate iterative optimization algorithm to solve the objective function.It verifies the effectiveness of the method through comparative experiments on eight multi-view datasets.
作者 刘瑜童 滕少华 张巍 Liu Yutong;Teng Shaohua;Zhang Wei(School of Computers,Guangdong University of Technology,Guangzhou 510006,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第8期2315-2320,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61972102) 广东省重点领域研发计划资助项目(2020B010166006) 广东省教育厅资助项目(粤教高函〔2018〕179号,粤教高函〔2018〕1号) 广州市科技计划资助项目(201903010107,201802030011,201802010026,201802010042,201604046017)。
关键词 多视角聚类 稀疏表示 图融合 一致性 相似性 multi-view clustering sparse representation graph fusion consistency similarity
  • 相关文献

参考文献4

二级参考文献19

  • 1陈梅兰.基于网格和密度聚类算法研究[J].计算机与现代化,2005(2):1-5. 被引量:9
  • 2冯兴杰,黄亚楼.带约束条件的聚类算法研究[J].计算机工程与应用,2005,41(7):12-14. 被引量:12
  • 3冯永,吴开贵,熊忠阳,吴中福.一种有效的并行高维聚类算法[J].计算机科学,2005,32(3):216-218. 被引量:6
  • 4陈卓,孟庆春,魏振钢,任丽婕,窦金凤.一种基于网格和密度凝聚点的快速聚类算法[J].哈尔滨工业大学学报,2005,37(12):1654-1657. 被引量:14
  • 5[1]Jiawei Han,Micheline Kamber.Data Mining Concepts and Techniques[M].Morgan Kaufmann Publishers.Inc.2001. 被引量:1
  • 6[2]Rakesh Agrawal,Johannes Gehrke,Dimitrios Gunopulos,Prabhakar Raghavan.Automatic Subspace Clustering of High Dimensional Data for Data Mining Application[C].In:Proceedings of the 1998 ACM-SIGMOD International Conference on Management of Data,Seattle,Washington,1998-06. 被引量:1
  • 7[3]Goil Sanjay,Harasha Nagesh,Alok Choudhary.MAFIA:Efficient and Scalable Subspace Clustering for Very Large Data Sets[R].Technical Report NumberCPDC-TR-9906-019,Center for Parallel and Distributed Computing,Northwestern University,1999. 被引量:1
  • 8[4]Cheng C,Fu A,Zhang Y.Entropy-based subspace clustering for mining numerical data[C].In:Proceeding of the 5th ACM SIGKDD,San Diego.CA,1999:84~93. 被引量:1
  • 9[5]Hinncburg A,Keim D.Optimal Grid-Clustering:Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering[C].Jn:Proceedings of the 25th Very Large Databases Conference,Edinburgh,Scotland,1999. 被引量:1
  • 10[6]Aggarwal C C,Procopiuc C,Wolf J L,Yu P S,Park J S.Fast algorithms for projected clustering.In Proc.of the ACM SIGMOD Conference PhiladelPhia,PA,1999:61-72. 被引量:1

共引文献32

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部