期刊文献+

基于被动-主动的特征演化流学习 被引量:3

Passive-Aggressive Learning with Feature Evolvable Streams
下载PDF
导出
摘要 在许多现实应用中,数据以一种特征演化流的形式收集.例如,随着传感器的更换,由旧传感器收集的数据特征会消失,新传感器收集的数据特征会出现.在线被动主动算法已被证明可以有效地从具有固定特征空间和梯形特征空间的数据集中学习线性分类器.因此,提出了一种基于被动主动更新策略的特征演化学习算法(passive-aggressive learning with feature evolvable streams,PAFE).该算法通过主动被动更新策略从当前特征空间和被恢复的已消失特征空间中学习了2个模型.具体来说,在重叠时段,即新旧特征同时存在的时段,该算法用新特征恢复了消失的特征空间,同时用旧特征空间模拟了新特征空间,进而为新特征空间的模型学习提供合理的初始化.基于这2个模型,为提高算法整体性能提出了2个集成算法:组合预测和当前最优预测.在合成数据集和真实数据集上的实验结果验证了该算法的有效性. In many real-world applications,data are collected in the form of a feature evolvable stream.For instance,old features of data gathered by limited-lifespan sensors disappear and new features emerge at the same time along with the sensors exchanging simultaneously.Online passive-aggressive algorithms have proven to be effective in learning linear classifiers from datasets with both a fixed feature space and a trapezoidal feature space.Therefore,in this paper we propose a new feature evolvable learning based on passive-aggressive update strategy(PAFE),which utilizes the margin to modify the current classifier.The proposed algorithm learns two models through passive-aggressive update strategy from the current features and recovered features of the vanished features.Specifically,we both recover the vanished features and mine the initialization of the current model from the overlapping periods in which both old and new features are available.Furthermore,we use two ensemble methods to improve performance:combining the predictions from the two models,and dynamically selecting the best single prediction.Experiments on both synthetic and real data validate the effectiveness of our proposed algorithm.
作者 刘艳芳 李文斌 高阳 Liu Yanfang;Li Wenbin;Gao Yang(State Key Laboratory for Novel Software Technology(Nanjing University),Nanjing 210023;College of Mathematics and Information Engineering,Longyan University,Longyan,Fujian 364012)
出处 《计算机研究与发展》 EI CSCD 北大核心 2021年第8期1575-1585,共11页 Journal of Computer Research and Development
基金 国家重点研发计划项目(2018AAA0100905) 福建省中青年教师教育科研项目(科技类)(JAT190743) 龙岩市科技计划项目(2019LYF13002,2019LYF12010)。
关键词 在线学习 被动主动策略 监督学习 集成学习 演化特征 online learning passive-aggressive strategy supervised learning ensemble learning evolvable features
  • 相关文献

参考文献4

二级参考文献82

  • 1许冠英,韩萌,王少峰,贾涛.数据流集成分类算法综述[J].计算机应用研究,2020,37(1):1-8. 被引量:11
  • 2Nature. Big data [EB/OL]. [ 2012-10-02 ]. http://www. nature, com/news/Specials/bigdata/index, html. 被引量:1
  • 3Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http: //www. sciencemag, org/site/ speclal/data. 被引量:1
  • 4杨海钦,吕荣聪,金国庆.面向大数据的在线学习算法[J].中国计算机学会通讯.2014,10(11):36-40. 被引量:1
  • 5Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain [J]. Psychological Review, 1958, 65(6): 386-408. 被引量:1
  • 6Crammer K, Dekel O, Keshet J, et al. Online passive- aggressive algorithms [J]. Journal of Machine Learning Research, 20061 7(3): 551-585. 被引量:1
  • 7Langford J, Li Lihong, Zhang Tong. Sparse online learning via truncated gradient [J]. Journal of Machine Learning Research, 2009, 10(3) : 777-801. 被引量:1
  • 8Duchi J, Singer Y. Efficient online and batch learning using forward backward splitting [J]. Journal of Maching Learning Research, 2009, 10(12): 2899-2934. 被引量:1
  • 9Xiao L. Dual averaging methods for regularized stochastic learning and online optimization [J]. Journal of Machine Learning Research, 2010, 11(10): 2543-2596. 被引量:1
  • 10Yang Haiqin, Lyu M R, King I. Efficient online learning for multi-task feature selection [J]. ACM Trans on Knowledge Discovery from Data, 2013, 1(1) ; 1-28. 被引量:1

共引文献69

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部