摘要
Phytohormones play crucial roles in fruit set regulation and development.Here,gibberellins(GA4+7),but not GA3,induced pear parthenocarpy.To systematically investigate the changes upon GA4+7 induced pear parthenocarpy,dynamic changes in histology,hormone and transcript levels were observed and identified in unpollinated,pollinated and GA4+7-treated ovaries.Mesocarp cells continued developing in both GA4+7-treated and pollinated ovaries.In unpollinated ovaries,mesocarp cells stopped developing 14 days after anthesis.During fruit set process,GA4+7,but not GA1+3,increased after pollination.Abscisic acid(ABA)accumulation was significantly repressed by GA4+7 or pollination,but under unpollinated conditions,ABA was produced in large quantities.Moreover,indole-3-acetic acid biosynthesis was not induced by GA4+7 or pollination treatments.Details of this GA–auxin–ABA cross-linked gene network were determined by a comparative transcriptome analysis.The indole-3-acetic acid transport-related genes,mainly auxin efflux carrier component genes,were induced in both GA4+7-treated and pollinated ovaries.ABA biosynthetic genes of the 9-cis-epoxycarotenoid dioxygenase family were repressed by GA4+7 and pollination.Moreover,directly related genes in the downstream parthenocarpy network involved in cell division and expansion(upregulated),and MADS-box family genes(downregulated),were also identified.Thus,a model of GA-induced hormonal balance and its effects on parthenocarpy were established.
基金
This work was supported by the China Agriculture Research System(CARS-29-40)
Weinan Experimental Station foundation of Northwest A&F University.