摘要
The multi-dimensional laser is a fascinating platform not only for the discovery and understanding of new higherdimensional coherent lightwaves but also for the frontier study of the complex three-dimensional(3D)nonlinear dynamics and solitary waves widely involved in physics,chemistry,biology and materials science.Systemically controlling coherent lightwave oscillation in multi-dimensional lasers,however,is challenging and has largely been unexplored;yet,it is crucial for both designing 3D coherent light fields and unveiling any underlying nonlinear complexities.Here,for the first time,we genetically harness a multi-dimensional fibre laser using intracavity wavefront shaping technology such that versatile lasing characteristics can be manipulated.We demonstrate that the output power,mode profile,optical spectrum and mode-locking operation can be genetically optimized by appropriately designing the objective function of the genetic algorithm.It is anticipated that this genetic and systematic intracavity control technology for multi-dimensional lasers will be an important step for obtaining high-performance 3D lasing and presents many possibilities for exploring multi-dimensional nonlinear dynamics and solitary waves that may enable new applications.
基金
supported in part by US National Institutes of Health(NIH)Grant R01 CA186567(NIH Director’s Transformative Research Award).