摘要
A multi-point flexible straightening process characterized by reciprocating bending is proposed.Specifically,the process is analyzed in terms of deformation mechanism and verified by numerical simulations and physical experiments of the straightening of a series of metal profiles with different materials and initial shapes.Further,the relationship between the bending radius and the times of reciprocating bending required to unify the curvature is discussed,and the distribution of residual stress after straightening is analyzed.The results show that the reciprocating bending process can eliminate the difference of the initial curvature,make the curvature of each section tend to be uniform;the times of reciprocating bending to reach the uniform curvature decreases with the decrease of bending radius.The straightness of the straightened profile obtained from the experiment and simulation is less than 0.2%,demonstrating a good feasibility of this method.
提出一种以往复弯曲为特征的多点柔性矫直工艺。从理论上阐述该工艺的变形机理,通过数值模拟和物理实验验证不同材料、不同截面形状的一系列金属型材的矫直。进一步讨论弯曲半径与统一曲率所需往复弯曲次数的关系,并分析矫直型材后残余应力的分布情况。结果表明:往复弯曲过程可以消除初始曲率的差异,使各截面的曲率趋于均匀;型材的弯曲半径越小,达到均匀曲率所需的弯曲次数越少。实验和仿真结果表明,矫直后型材的直线度小于0.2%,验证了该方法的可行性。
基金
financially supported by the National Natural Science Foundation of China(No.52005431)
the National Natural Science Foundation of Hebei Province,China(No.E2020203086)
the National Major Science and Technology Project of China(No.2018ZX04007002).