摘要
A rapid,sensitive,and cost-effective analyticalmethod was developed for the analysis of selected semivolatileorganic compounds in water.The method used anautomated online solid-phase extraction technique coupledwith programmed-temperature vaporization large-volumeinjection gas chromatography/mass spectrometry.Thewater samples were extracted by using a fully automatedmobile rack system based on x-y-z robotic techniquesusing syringes and disposable 96-well extraction plates.The method was validated for the analysis of 30 semivolatileanalytes in drinking water,groundwater,andsurface water.For a sample volume of 10 mL,the linearcalibrations ranged from 0.01 or 0.05 to 2.5μg·L^(-1),and themethod detection limits were less than 0.1μg·L^(-1).For thereagent water samples fortified at 1.0μg·L^(-1)and2.0μg·L^(-1),the obtained mean absolute recoveries were70%-130%with relative standard deviations of less than20%for most analytes.For the drinking water,groundwater,and surface water samples fortified at 1.0μg·L^(-1),theobtained mean absolute recoveries were 50%-130%withrelative standard deviations of less than 20%for mostanalytes.The new method demonstrated three advantages:1)no manipulation except the fortification of surrogatestandards prior to extraction;2)significant cost reductionassociated with sample collection,shipping,storage,andpreparation;and 3)reduced exposure to hazardous solventsand other chemicals.As a result,this new automatedmethod can be used as an effective approach for screeningand/or compliance monitoring of selected semi-volatileorganic compounds in water.
基金
The authors thank LEAP Technologies(Carrboro,NC,USA)for providing the technical support of the automated solid-phase extraction system.