期刊文献+

强弱连接对学科引证知识扩散动态链路预测的影响研究 被引量:2

Influence of Strong and Weak Ties on Dynamic Link Prediction of Knowledge Diffusion in Disciplinary Citation Networks
原文传递
导出
摘要 [目的/意义]强弱连接是影响学科引证知识扩散动态链路预测的重要因素之一。学科知识扩散强弱引证连接相互协同、相互影响,共同促进了学科间的知识交流、融合与创新。学科引证知识扩散动态链路预测中强弱连接效应的探索,可为强弱连接理论应用场景的拓展,学科引证知识扩散行为微观演化规律的揭示以及动态链路预测算法指标的评价、设计与优化提供理论与实践参考。[方法/过程]依托内外协同的思路理念,构建一种外部网络结构调控与内部微观演化机理剖析相结合的动态链路预测强弱连接效应探测方法,分别从学科引证知识关联权重调节、连边失效触发以及强弱连接模体分析三个维度,对基于共同邻居相似性的学科引证知识扩散动态链路预测中的强弱连接效应问题进行探讨。[结果/结论]强连接在学科引证知识扩散网络演化及动态链路预测过程中扮演着更加重要的角色;链路预测中的强弱连接现象不仅与学科引证关联权重有关,还会受到共同邻居数目以及网络微观模体结构的影响;知识宿学科的吸纳融合能力相对于知识源学科的溢出辐射能力来说,在新连边衍生过程中的主导地位更加突出。 [Purpose/significance]The strong and weak ties is one of the important factors that affect the dynamic link prediction of knowledge diffusion in disciplinary citation networks.The strong and weak citation ties in diffusion of disciplinary knowledge jointly promote knowledge exchange,integration and innovation among disciplines with coordination and mutual effect.The exploration of strong and weak ties in the dynamic link prediction of knowledge diffusion in disciplinary citation networks can provide theoretical and practical references for expanding the application of the strong and weak ties theory,revealing the micro-evolution law of knowledge diffusion behavior of disciplinary citation,and evaluating,designing and optimizing dynamic link prediction algorithm indicators.[Method/process]In this paper,on the basis of synergistic idea,the method of detecting strong and weak ties in the dynamic link prediction was constructed by controlling external structure and analyzing internal evolution mechanism of the networks.To be specific,the influence of strong and weak ties on the dynamic link prediction of knowledge diffusion in disciplinary citation networks based on common neighbor similarity was discussed from three perspectives of adjustment of knowledge connection weight in disciplinary citation networks,link failure triggering and motif analysis.[Result/conclusion]The research has shown that,firstly,strong ties play a more important role in evolution of knowledge diffusion in disciplinary citation networks and dynamic link prediction;secondly,strong and weak ties effect in link prediction is not only related to connection weight of disciplinary citation networks,but affected by the number of common neighbor and micro motif structure;thirdly,compared with the spillover ability of knowledge from source discipline,the absorbing ability of knowledge in destination discipline has a more prominent impact on the process of developing new knowledge links.
作者 岳增慧 许海云 赵敏 Yue Zenghui;Xu Haiyun;Zhao Min(School of Medical Information Engineering,Jining Medical University,Rizhao 276826;Business School,Shandong University of Technology,Zibo 255000;Jining Medical University,Rizhao 276826)
出处 《图书情报工作》 CSSCI 北大核心 2021年第13期66-76,共11页 Library and Information Service
基金 国家自然科学基金青年项目"学科知识扩散规律及动力学机制研究"(项目编号:71704063) 国家自然科学基金青年项目"基于科学-技术主题关联分析的创新演化路径识别方法研究"(项目编号:71704170)研究成果之一。
关键词 学科引证知识扩散 强弱连接 权重调节 连边失效 三元组模体 动态链路预测 knowledge diffusion in disciplinary citation networks strong ties and weak ties weight adjustment link failure triad motif dynamic link prediction
  • 相关文献

参考文献9

二级参考文献86

  • 1吴俊,谭跃进.复杂网络抗毁性测度研究[J].系统工程学报,2005,20(2):128-131. 被引量:120
  • 2GETOOR L,DIEHL C P.Link mining:a survey[J].ACM SIGKDD Explorations Newsletter,2005,7(2):3-12. 被引量:1
  • 3SARUKKAI R R.Link prediction and path analysis using markov chains[J].Computer Networks,2000,33(1-6):377-386. 被引量:1
  • 4ZHU J,HONG J,HUGHES J G Using markov chains for link prediction in adaptive web sites[J].Lect Notes Comput Sci,2002,2311:60-73. 被引量:1
  • 5POPESCUL A,UNGAR L.Statistical relational learning for link prediction[C] //Proceedings of the Workshop on Learning Statistical Models from Relational Data.New York:ACM Press,2003:81-87. 被引量:1
  • 6O'MADADHAIN J,HUTCHINS J,SMYTH P.Prediction and ranking algorithms for event-based network data[C] //Proceedings of the ACM SIGKDD 2005.New York:ACM Press,2005:23-30. 被引量:1
  • 7LIN D.An information-theoretic definition of similarity[C] //Proceedings of the 15th Intl Conf Mach.Learn..San Francisco,Morgan Kaufman Publishers,1998:296-304. 被引量:1
  • 8LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social networks[J].J Am Soc Inform Sci Technol,2007,58(7):1019-1031. 被引量:1
  • 9CLAUSET A,MOORE C,NEWMAN M E J.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453:98-101. 被引量:1
  • 10HOLLAND P W,LASKEY K B,LEINHARD S.Stochastic blockmodels:First steps[J].Social Networks,1983,5:109-137. 被引量:1

共引文献290

同被引文献37

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部