期刊文献+

机床智能控制系统体系架构及关键技术研究进展 被引量:19

Research Progress on the Architecture and Key Technologies of Machine Tool Intelligent Control System
原文传递
导出
摘要 机床智能控制系统是未来智能机床领域的重要组成部分,对提高制造业核心竞争力具有重要意义。相比传统数控系统,机床智能控制系统具有更高效、稳定地加工质量,以及可代替人工经验智能判断等优点。针对现有机床智能控制系统方面的综述性讨论较少的情况,通过分析机床控制系统发展历程中四个阶段的特点,提出机床控制系统的智能化体系和架构。然后,从先进技术角度,详细阐述了人工智能技术、数字孪生技术以及云服务等关键技术,在机床智能控制系统中的应用。最后,通过分析智能机床面临的几大严峻挑战与应对之策,展望了未来机床智能化控制系统的发展趋势。 Machine tool intelligent control system, as an integral part of future intelligent machine tools, plays a significant role in improving core competencies of manufacture. Compared with traditional CNC system, the intelligent one has the advantage of higher efficiency and more stable manufacturing quality. It’s able to make intelligent decisions and substitute experiences of human operators. Considering that there are few reviews on intelligent control system of machine tools, the framework and architecture of the machine tool intelligent control system is proposed by analyzing features from four stages of historical development of the machine tool control system. From the perspective of advanced technology, the related key technologies and engineering applications are elaborated, such as artificial intelligence, digital twins and cloud services. At last, after analyzing several major challenges of intelligent machine tools and their countermeasures, the future development trend of machine tool intelligent control system is forecasted.
作者 孟博洋 李茂月 刘献礼 WANG Lihui LIANG S Y 王志学 MENG Boyang;LI Maoyue;LIU Xianli;WANG Lihui;LIANG S Y;WANG Zhixue(Key Lab of Intelligent Technology for Cutting and Manufacturing,Ministry of Education,Harbin University of Science and Technology,Harbin 150080;KTH Royal Institute of Technology,Stockholm,25175 Sweden;George W.Woodruff School of Mechanical Engineering,Georgia Institute of Technology,Atlanta,30332 USA)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2021年第9期147-166,共20页 Journal of Mechanical Engineering
基金 国家自然科学基金国际合作与交流重点资助项目(51720105009)。
关键词 数控机床 智能控制系统 人工智能 数字孪生 云服务 CNC machine tool intelligent control system artificial intelligence digital twin cloud service
  • 相关文献

参考文献32

二级参考文献289

共引文献1133

同被引文献139

引证文献19

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部