期刊文献+

指数时间差分方法在材料辐照损伤模拟计算中的应用

Application of Exponential Time Difference Method in Simulation Calculation of Material Irradiation Damage
下载PDF
导出
摘要 速率理论是一种用于模拟辐照诱导材料微观结构长时间演变过程的重要方法,其计算难点在于对大规模刚性的速率理论方程的数值求解。本文首次采用指数时间差分方法实现对速率理论方程的并行数值求解,分别给出了指数时间差分方法在热老化导致空洞演化和辐照诱导位错环演化模拟中的实现形式。测试结果证实了指数时间差分方法对大规模速率理论方程并行求解的可行性,有助于实现辐照诱导材料微结构长时演化行为的高效模拟。 The rate theory is a kind of important method to simulate long-time irradiation damage.Its computational difficulty lies in the numerical solution of the rate theory(RT)equations for large-scale.The master equation of rate theory is hard to solve directly because of the stiffness of the RT equations.In this paper,the exponential time difference method was used to solve the RT equations parallelly.The implementation of the exponential time difference method was given in the simulation of thermal aging-induced cavity evolution type and irradiation-induced dislocation loop evolution,respectively.The results confirm the feasibility of the exponential time difference method for solving the large-scale RT equations parallelly,which helps to implement the efficient simulation of the long-time evolution behavior of irradiation-induced material microstructures.
作者 辛之夼 聂宁明 贺新福 王彦棡 吴石 王珏 XIN Zhikuang;NIE Ningming;HE Xinfu;WANG Yangang;WU Shi;WANG Jue(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100190,China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China;China Institute of Atomic Energy,Beijing 102413,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2021年第7期1230-1240,共11页 Atomic Energy Science and Technology
基金 国家自然科学基金(U1867217) 国家磁约束核聚变能发展研究专项(2018YFE0308104)。
关键词 辐照损伤 速率理论 指数时间差分方法 irradiation damage rate theory exponential time difference method
  • 相关文献

参考文献6

二级参考文献14

  • 1吴永,李正良.流形上微分方程的算法[J].数学进展,2006,35(4):385-394. 被引量:3
  • 2Magnus W. On the exponential solution of differential equations for a linear operators[J]. Comm Pure Appl Math, Ⅶ, 1954, 649-673. 被引量:1
  • 3Iserles A, Munthe-Kaas H, Nφrsett Syvert P. Lie Group Methods. Acta Numeric, 2000, 215-365. 被引量:1
  • 4Cox S M and Matthews P C. Exponential time differencing for stiff systems[J]. J. Comp. Phys., 2002, 176: 430-455. 被引量:1
  • 5Sun Jianqiang, Ma Zhongqi, Qin Mengzhao. RKMK method of solving non-damping LL equations and ferromagnet chain equations[J]. Applied Mathematcis and computation, 2004, 157: 407-424. 被引量:1
  • 6Hairer E, Wanner G. Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems. Springer-Verlag, New York, 1999. 被引量:1
  • 7Beyklin G, Keiser J M and Vozovoi L. A new class of time discretization scheme for the solution of nonlinear PDEs[J]. J. Comp. Phys., 1998, 147: 362-387. 被引量:1
  • 8Gear W, Kevrekidis I. Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue SPectral[J]. SIAM Journal on Scientific Computing, 2003, 24: 1091-1106. 被引量:1
  • 9Vanden Berghe G, Ixaru L Gr, De Meyer H. Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods[J]. Journal of Computational and Applied Mathematics, 2001, 132: 95-105. 被引量:1
  • 10Du Qiang, Zhu Wenxiang. Stability analysis and application of the exponential time differencing scheme[J]. Journal of Computation Mathematicsm, 2004, 22(2). 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部