期刊文献+

求解反应扩散方程的紧致隐积分因子方法 被引量:4

Compact Implicit Integration Factor Method to Solve the Reaction Diffusion Equation
下载PDF
导出
摘要 积分因子(IF)方法是近年来提出的求解刚性常微分方程组的一种有效的数值方法。本文应用改进的紧致隐积分因子(cIIF)方法求解二维反应扩散方程。在空间离散上采用二阶中心差分方法。数值模拟得到各种斑图结构与所引文献结果相当一致。 积分因子(IF)方法是近年来提出的求解刚性常微分方程组的一种有效的数值方法。本文应用改进的紧致隐积分因子(cIIF)方法求解二维反应扩散方程。在空间离散上采用二阶中心差分方法。数值模拟得到各种斑图结构与所引文献结果相当一致。
作者 张荣培
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第S1期208-212,共5页 Periodical of Ocean University of China
基金 国家自然科学基金青年基金项目(61105130)资助
关键词 反应扩散方程 紧致隐积分因子方法 有限差分 reaction diffusion equation compact implicit integration factor finite difference
  • 相关文献

参考文献10

  • 1孙建强,秦孟兆,戴桂冬.解扩散方程的指数时间差分方法[J].数值计算与计算机应用,2008,29(4):261-266. 被引量:4
  • 2Jianfeng Zhu,Yong-Tao Zhang,Stuart A. Newman,Mark Alber.Application of Discontinuous Galerkin Methods for Reaction-Diffusion Systems in Developmental Biology[J]. Journal of Scientific Computing . 2009 (1-3) 被引量:1
  • 3Lengyel I,Epstein I R.Modeling of Turing structure in thechlorite-iodide-malonic acid-starch reaction system. Science . 1991 被引量:1
  • 4Gray P,Scott SK.Sustained oscillations and other exotic patterns of behavior in isothermal reactions. The Journal of Physical Chemistry . 1985 被引量:1
  • 5Zhang Y T,Nie Q,Wan F Y M,Liu X F.Integration factor methods for high spatial dimensions. Journal of Computational Physics . 2008 被引量:1
  • 6Pearson JE.Complex patterns in a simple system. Science . 1993 被引量:1
  • 7Turing AM.The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London,Sereis A;Mathematical, Physical and Engineering Sciences . 1952 被引量:1
  • 8De Kepper P,Castets V,Dulos E.Turing-type chemical patternsin the chlorite-iodide-malonic acid reaction. Physica D Nonlinear Phenomena . 1991 被引量:1
  • 9Nie Q,Zhang Y T,Zhao R.Efficient semi-implicit schemes forstiff systems. Journal of Computational Physics . 2006 被引量:1
  • 10Schnakenberg J.Simple chemical reaction systems with limit cyclebehaviour. Journal of Theoretical Biology . 1979 被引量:1

二级参考文献10

  • 1吴永,李正良.流形上微分方程的算法[J].数学进展,2006,35(4):385-394. 被引量:3
  • 2Magnus W. On the exponential solution of differential equations for a linear operators[J]. Comm Pure Appl Math, Ⅶ, 1954, 649-673. 被引量:1
  • 3Iserles A, Munthe-Kaas H, Nφrsett Syvert P. Lie Group Methods. Acta Numeric, 2000, 215-365. 被引量:1
  • 4Cox S M and Matthews P C. Exponential time differencing for stiff systems[J]. J. Comp. Phys., 2002, 176: 430-455. 被引量:1
  • 5Sun Jianqiang, Ma Zhongqi, Qin Mengzhao. RKMK method of solving non-damping LL equations and ferromagnet chain equations[J]. Applied Mathematcis and computation, 2004, 157: 407-424. 被引量:1
  • 6Hairer E, Wanner G. Solving Ordinary Differential Equations Ⅱ: Stiff and Differential Algebraic Problems. Springer-Verlag, New York, 1999. 被引量:1
  • 7Beyklin G, Keiser J M and Vozovoi L. A new class of time discretization scheme for the solution of nonlinear PDEs[J]. J. Comp. Phys., 1998, 147: 362-387. 被引量:1
  • 8Gear W, Kevrekidis I. Projective Methods for Stiff Differential Equations: Problems with Gaps in Their Eigenvalue SPectral[J]. SIAM Journal on Scientific Computing, 2003, 24: 1091-1106. 被引量:1
  • 9Vanden Berghe G, Ixaru L Gr, De Meyer H. Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods[J]. Journal of Computational and Applied Mathematics, 2001, 132: 95-105. 被引量:1
  • 10Du Qiang, Zhu Wenxiang. Stability analysis and application of the exponential time differencing scheme[J]. Journal of Computation Mathematicsm, 2004, 22(2). 被引量:1

共引文献3

同被引文献18

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部