期刊文献+

基于SIFT+FSC算法的遥感图像自动匹配 被引量:4

Automatic image registration of remote sensing images based on SIFT and FSC algorithms
下载PDF
导出
摘要 为提高遥感影像间自动匹配的精度,采用SIFT(scale invariant feature)算法进行特征提取以及初匹配,并利用RANSAC(random sample consensus)和FSC(fast sample consensus)算法进行局外点剔除,分析剩余点的数量和分布情况。经过实验对比,基于SIFT+FSC算法,可以获取足够数量且分布均匀的匹配点对,实现遥感图像自动化的精确匹配,为影像的批量自动校正处理提供了解决思路。 Firstly the thesis performs feature extraction and first-step image registration by using SIFT algorithm,and removing the outliers through FSC(Fast Sample Consensus)algorithm and computing the parameters and then performing image registration and fusion process.Through the experimental comparison,a precise automatic image registration can be performed.This method provides a solution to the images of the far-shore islands and overseas that are lacking ground control points.
作者 郭丽 焦红波 董少敏 GUO Li;JIAO Hongbo;DONG Shaomin(92556 Troops,Zhoushan 310000,China;National Marine Data and Information Service,Tiaiijin 300171,China)
出处 《海洋测绘》 CSCD 北大核心 2021年第2期49-53,共5页 Hydrographic Surveying and Charting
关键词 遥感影像处理 特征提取 图像匹配 SIFT算法 FSC算法 remote sensing image processing feature extraction image registration SIFT algorithm FSC algorithm
  • 相关文献

参考文献6

二级参考文献59

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2尤红建,苏林,李树楷.基于扫描激光测距数据的建筑物三维重建[J].遥感技术与应用,2005,20(4):381-385. 被引量:24
  • 3Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787. 被引量:1
  • 4Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72. 被引量:1
  • 5Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. 被引量:1
  • 6Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 7Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513. 被引量:1
  • 8Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. 被引量:1
  • 9Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436. 被引量:1
  • 10Lowe D G. Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 1150-1157. 被引量:1

共引文献180

同被引文献19

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部