期刊文献+

基于高斯平滑压缩感知分数阶全变分算法的图像重构 被引量:6

Image Reconstruction Based on Gaussian Smooth Compressed SensingFractional Order Total Variation Algorithm
下载PDF
导出
摘要 针对全变分(TV)算法梯度效应造成图像纹理细节丢失和单像素成像系统中的环境噪声问题,该文给出基于高斯平滑压缩感知分数阶全变分(FOTVGS)算法的图像重构。分数阶微分损失图像低频分量的同时增加了图像的高频分量,达到增强图像细节的目的,高斯平滑滤波算子更新拉格朗日梯度算子滤除了微分算子导致的加性高斯白噪声高频分量的增加。仿真结果表明,对比其他4种同类算法,在相同的采样率和噪声水平下,该算法能取得最大的峰值信噪比(PSNR)和结构相似度(SSIM)。采样率为0.2时,对比分数阶全变分(FOTV)算法,在无噪声(测量值SNR=1)和有噪声(测量值SNR=25 dB)情况下提高的最大峰值信噪比和结构相似度分别是1.39 dB(0.035)和3.91 dB(0.098)。可见,此算法在无噪声和有噪声情况下均能提高图像的重构质量,尤其是在有噪声情况下对图像重构质量有较大提高。该算法为单像素成像等计算成像系统中由于环境造成的噪声的图像重构提供了可行的解决方案。 In view of the gradient effect caused by the gradient effect of the Total Variation(TV)algorithm and the environmental noise in the single pixel imaging system,an image reconstruction based on the Gaussian Smooth compressed sensing Fractional Order Total Variation algorithm(FOTVGS)is proposed.Fractional differential loss of low-frequency components of the image increases the high-frequency components of the image to achieve the purpose of enhancing image details.The Gaussian smoothing filter operator updates the Lagrangian gradient operator to filter out the additive white Gaussian noise caused by the differential operator.Simulation results show that,compared with other four similar algorithms,the algorithm can achieve the maximum Peak Signal-to-Noise Ratio(PSNR)and Structural SIMilarity(SSIM)at the same sampling rate and noise level.When the sampling rate is 0.2,compared with the Fractional Order Total Variation(FOTV)algorithm,the maximum PSNR and SSIM increase by 1.39 dB(0.035)and 3.91 dB(0.098)respectively.It can be proved that this algorithm can improve the reconstruction quality of the image in the absence of noise and noise,especially in the case of noise,the quality of image reconstruction is greatly improved.The proposed algorithm provides a feasible solution for image reconstruction of noise caused by environment in single-pixel imaging and other computing imaging system.
作者 覃亚丽 梅济才 任宏亮 胡映天 常丽萍 QIN Yali;MEI Jicai;REN Hongliang;HU Yingtian;CHANG Liping(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310014,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2105-2112,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61675184,61275124) 浙江省自然科学基金(LY18F010023)。
关键词 图像重构 压缩感知 全变分 分数阶微分 高斯平滑 Image reconstruction Compressive sensing Fractional differential Total variation Gaussian smooth
  • 相关文献

参考文献3

二级参考文献6

共引文献12

同被引文献67

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部