期刊文献+

基于局部方差与残差复杂性的医学图像配准 被引量:11

Medical Image Registration Based on Local Variance and Residual Complexity
下载PDF
导出
摘要 文中提出了一种新的基于局部方差与残差复杂性的相似性测度.传统的基于灰度的相似性测度易受噪声、灰度偏移场和造影剂的影响造成误配.残差复杂性在一定程度上可以克服这一难点,但该测度对初始参数非常敏感,参数设置不正确往往达不到好的配准效果.文中利用图像的局部方差信息构造权重函数,在图像残差比较大的地方给予小的权重约束,在残差比较小的地方给予大的约束,计算约束后残差图像的残差复杂性作为新的相似性测度.新测度更平滑、鲁棒性更好,不容易陷入局部极值.对模拟数据和真实数据的实验表明新测度对噪声、灰度偏移场、造影剂和初始参数具有更高的鲁棒性,更加适合于医学图像配准. We propose a new similarity measure using local variance and residual complexity.Traditional intensity-based similarity measures are easily disturbed by noise,intensity bias field and contrast agent.Even though residual complexity can tackle this problem in some way,it may not have robust performance due to initial parameter.To address the poor robust problem,our new measure employs local variance of reference image to construct weighting function.This function could automatically constraint the residual image.It gives small weighting value to large residual value,and vice versa.Then,we calculate residual complexity of constrained residual image.We validate our algorithms using both simulated data and clinical data.The experiment results indicate that new measure is more robust to initial parameters,noise,intensity bias field and contrast agent.
出处 《计算机学报》 EI CSCD 北大核心 2015年第12期2400-2411,共12页 Chinese Journal of Computers
基金 国家自然科学基金(31000450) 广东省自然科学基金(2014A030313316) 广州市珠江科技新星专项基金项目(2012J2200041)资助
关键词 局部方差 指数函数 残差复杂性 鲁棒估计 图像配准 local variance exponential function residual complexity robust estimation image registration
  • 相关文献

参考文献15

  • 1Bhattacharya M, Das A. Multimodality medical image regis?tration and fusion techniques using mutual information and genetic algorithm-based approaches. Software Tools and Algorithms for Biological Systems, 2011, 696: 441-449. 被引量:1
  • 2Makni N, Toumi I, Puech P, et al. A nonrigid registration and deformation algorithm for ultrasound &. MR images to guide prostate cancer therapies/ /Proceedings of the IEEE Engineering in Medicine and Biology Society. Buenos Aires, Argentina, 2010: 3711-3714. 被引量:1
  • 3De Craene M, Piella G, Camara 0, et al. Temporal diffeo?morphic free- form deformation: Application to motion and strain estimation from 3D echocardiography. Medical Image Analysis, 2012, 16(2): 427-450. 被引量:1
  • 4Ardekani B A, Guckemus S, Bachman A, et al. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 2005, 142(1): 67-76. 被引量:1
  • 5Hermosillo G, Faugeras 0. Dense image matching with global and local statistical criteria: A variational approach/ / Proceedings of the IEEE Computer Vision and Pattern Recognition. Kauai , USA, 2001: 73-78. 被引量:1
  • 6Zhao v . Soatto S. Nonrigid registration combining global and local statistics/ /Proceedings of the IEEE Computer Vision and Pattern Recognition. Miami, USA, 2009: 2200- 2207. 被引量:1
  • 7El-Baz A, Farag A, Gimel'farb G, Abdel-Hakim A E. Image alignment using learning prior appearance modell /Proceedings of the IEEE International Conference on Image Processing. Atlanta, USA, 2006: 341-344. 被引量:1
  • 8Wyatt p, Noble J. MAP-MRF joint segmentation and registration/ /Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention. Tokyo, Japan, 2002, 2488: 580-587. 被引量:1
  • 9Zheng G, Zhang X. A unifying MAP-MRF framework for deriving new point similarity measures for intensity-based 20- 3D registration/ /Proceedings of the International Conference on Pattern Recognition. Hong Kong, China, 2006: 1181- 1185. 被引量:1
  • 10Friston K J, Ashbumer J, Frith C 0, et al. Spatial registration and normalization of images. Human Brain Mapping, 1995, 3(3): 165-189. 被引量:1

同被引文献109

引证文献11

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部