摘要
本文以双模功率分流式混合动力汽车为研究对象,将其在模式切换过程中引起扭转振动问题的根源归纳为三个方面:传动系统的低阻尼特性、双向传递且不唯一的动力传输路径,以及来自于内燃机、驱动电机和离合器的扭矩波动与不确定性。扭转振动系统被简化为双弹簧耦合动力学模型,以突出扭转减振器和驱动轴的刚度和阻尼特性。扭转振动的主动控制系统采用前馈-反馈结构,主要包括动态扭矩分配策略和鲁棒反馈跟踪控制器。仿真测试再现了与道路实车试验一致的扭转振动现象;通过对比分析在多种测试工况下的系统瞬态动力学响应,确认了主动控制系统的优异性能:驱动轴上扭矩波动幅度减小至70 N·m,模式切换控制耗时缩短0.1 s,并且验证了鲁棒反馈跟踪控制器具有抵抗来自于内燃机和离合器的扭矩不确定性的鲁棒性能。
Taking the dual-mode power-split hybrid electric vehicle as the research object,the root causes of the torsional vibration problem caused by the mode switching process are summarized into three aspects:low damping characteristics of the transmission system,bidirectional and non-unique power transmission path,and torque fluctuations and uncertainty from the internal combustion engine,drive motor and clutch.The torsional vibration system is simplified as a dual-spring coupled dynamic model to highlight the stiffness and damping characteristics of the torsional vibration damper and the drive shaft.The active control system of torsional vibration adopts a feedforward-feedback structure,which mainly includes a dynamic torque distribution strategy and a robust feedback tracking controller.The simulation test reproduces the torsional vibration phenomenon consistent with the actual road vehicle test;through comparative analysis of the system transient dynamic response under various test conditions,the excellent performance of the active control system is confirmed:the torque fluctuation amplitude on the drive shaft is reduced to 70 N·m,the mode transition duration is shortened by 0.1 s,and it is verified that the robust feedback tracking controller has robustness against the torque uncertainty from the internal combustion engine and the clutch.
作者
徐德锋
张建武
于海生
Xu Defeng;Zhang Jianwu;Yu Haisheng(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240)
出处
《传动技术》
2021年第1期23-30,共8页
Drive System Technique
关键词
扭转振动
主动阻尼
功率分流模式
切换混合动力
torsional vibration
active damping
power-split
mode transition
hybrid electric