摘要
For a single-motor parallel hybrid electric vehicle, during mode transitions (especially the transition from electric drive mode to engine/parallel drive mode, which requires the clutch engagement), the drivability of the vehicle will be signifi- cantly affected by a clutch torque induced disturbance, driveline oscillations and jerks which can occur without adequate controls. To improve vehicle drivability during mode transitions for a single-motor parallel hybrid electric vehicle, two controllers are proposed. The first controller is the engine-side controller for engine cranking/starting and speed synchronization. The second controller is the motor-side controller for achieving a smooth mode transition with reduced driveline oscillations and jerks under the clutch torque induced disturbance and system uncertainties. The controllers are all composed of a feed-forward control and a robust feedback control. The robust controllers are designed by using the mu synthesis method. In the design process, control- oriented system models that take account of various parameter uncertainties and un-modeled dynamics are used. The results of the simulation demonstrate the effectiveness of the proposed control algorithms.
研究目的:改善一种单电机并联式混合动力电动汽车的驾驶性能。创新要点:1.建立面向控制器设计的系统模型,并且考虑系统参数的不确定性和CAN通讯延迟;2.设计基于mu综合的鲁棒控制器,减小了模式切换时车辆的冲击度,改善车辆的驾驶性能。研究方法:1.将发动机端和电机端的控制解耦,并对其进行单独的控制设计(图5、8);2.发动机端控制主要用于发动机调速,电机端控制主要用于补偿离合器转矩对传动系造成的干扰;3.控制器设计时采用前馈控制和鲁棒控制结合的方法。重要结论:通过采用鲁棒控制,使得一种单电机并联式混合动力电动汽车的驾驶性得到了改善。同时,在参数的不确定性和CAN通讯延迟的干扰下,整个系统依旧稳定运行且性能良好。
基金
Project supported by the International S&T Cooperation Program of China(No.2010DFA72760)