期刊文献+

基于少样本学习的遥感图像超分辨率重建算法 被引量:2

Remote Sensing Images Super-Resolution Reconstruction Algorithm Based on Few-shot Learning
下载PDF
导出
摘要 基于深度学习的超分辨率重建方法多数采用已知的模糊核训练网络,在实际应用中模糊核通常未知,在此情况下这类方法的重建效果将显著下降。零样本超分方法利用图像自身构建训练集,能够改善由于模糊核未知所带来的性能下降,但由于仅利用图像自身信息,对重建效果的提升有一定的局限性。本文提出增强少样本学习方法解决模糊核未知时的超分重建问题,一方面,选取与低分图像类似的示例图像构建训练集;另一方面,扩大网络规模并优化网络结构。在UCMerced_LandUse数据集上的实验结果表明,与零样本超分方法相比,本文所提方法具有更好的超分重建效果。 Most of Super-Resolution(SR)methods based on deep learning train the network with a known blur kernel.However,the blur kernels are usually unknown in realistic applications,resulting in severe performance drop for these SR methods.Zero-Shot SR constructs the training set with the input image itself,improving the performance while the blur kernels are unknown.But the information of the input image itself is very limited,so the improvement is limited.This paper proposes a method called Enhanced Few-Shot Super-Resolution to solve the problem of the unknown blur kernels in this paper.On the one hand,it constructs the training set with the low-res image itself and images similar to it.On the other hand,it enlarges the network and optimizes the network structure.The result of the experiment on UCMerced_LandUse shows that the method achieves better performance than ZSSR.
作者 李盛 潘宗序 雷斌 丁赤飚 LI Sheng;PAN Zong-xu;LEI Bin;DING Chi-biao(Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100190 China;School of Electronic,Electrical and Communication Engineering,University of ChineseAcademy of Sciences,Beijing 100049 China;Key Laboratory of Technology in Geo-spatial Information Processing and Application System,Chinese Academy of Sciences,Beijing 100190 China;National Key Lab of Microwave Imaging Technology,Chinese Academy of Sciences,Beijing 100190 China)
出处 《自动化技术与应用》 2021年第6期1-5,共5页 Techniques of Automation and Applications
关键词 遥感图像 深度学习 增强少样本超分 盲超分 Remote Sensing Images deep learning Enhanced Few-Shot Super-Resolution blind super-resolution
  • 相关文献

参考文献6

二级参考文献38

  • 1石友学,罗钟铉.利用几何特征和小波变换实现图像的缩放匹配[J].计算机辅助设计与图形学学报,2005,17(4):825-828. 被引量:5
  • 2乔建苹,刘琚.基于支撑向量机的盲超分辨率图像复原算法[J].电子学报,2007,35(10):1927-1933. 被引量:10
  • 3S. Farsiu, D. Robinson, M. Elad, and P. Milanfar. Advanced and Challenges in Super-Reso|ution [J]. International Journal of Imaging Systems and Technology, 2004,14(2):47-57. 被引量:1
  • 4D. Rajan , S. Chaudhuri. Generalized interpolation and its application in super-resolution imaging[J]. Image and Vision Computing, 2001, 19(13):957-969. 被引量:1
  • 5Tao H. J, Tan G. X, Liu. J. Super resolution remote sensing image processing algorithm based on wavelet transform and interpolation[C]//Proceedings of SPIE.I-Iangzhou, China, Society of Photo - Optical Instrumentation Engineers, 2003:259- 263. 被引量:1
  • 6S.Lertrattanapanich, N.K. Bose, High resolution image formation from low resolution frames using Delaunay triangulation [J]. IEEE Transactions on Image Processing,2002,11 ( 12): 1427-1441. 被引量:1
  • 7M. Irani, S. Peleg. Improving resolution by image registration [J]. CVGIP: Graphical Models and Image Processing, 1991,53(3):231-239. 被引量:1
  • 8R. R. Schuhz, R. L. Stevenson. Extraction of high-resolution frames form video sequences[J]. IEEE Transactions on Image Processing, 1996,5(6): 996-1011. 被引量:1
  • 9H. Chang, D.-Y. Yeung, Y. Xiong. Super-resolution through neighbor embedding [C]//IEEE Computer Society Conference on Computer Vision Pattern Recognition. Washington, DC USA: IEEE Computer Society, 2004(1):275-282. 被引量:1
  • 10T. Chart, J. Zhang. An improved super-resolution with manifold Learning and Histogram Matching[C]//Proceedings of IAPR International Conference on Biometric: Springer Verlag, 2006:756-762. 被引量:1

共引文献43

同被引文献41

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部