期刊文献+

图像超分辨率技术的回顾与展望 被引量:23

Review and Prospect of Image Super-Resolution Technology
下载PDF
导出
摘要 图像超分辨率(SR)是计算机视觉中提高图像和视频分辨率的一类重要技术。近年来,得益于神经网络的成功,基于深度学习的图像超分辨率技术正在蓬勃发展,这无疑是超分辨率技术研究的主流方向。对超分辨率工作进行综述。首先,总结目前已有的超分辨率技术,根据其输入输出进行分类介绍;其次,将基于深度学习的单图像超分辨率技术分为有监督学习和无监督学习两类进行论述,并对部分具有代表性的最新超分辨率重建技术进行总结分类介绍;然后,讨论了超分辨率技术的相关问题,即性能评价指标、标准数据集,进而对几种典型算法进行实验对比;最后,对图像超分辨率算法未来的研究趋势进行展望。 Image super-resolution(SR)is an important type of image processing technology for improving image and video resolution in computer vision.In recent years,thanks to the success of neural networks,image superresolution technology based on deep learning is booming,which is undoubtedly the mainstream direction of superresolution technology research.In this paper,the research progress of image super-resolution is summarized.First of all,the existing super-resolution techniques are summarized and introduced according to their input and output.Whats more,the single-image super-resolution technique based on deep learning is discussed from two aspects of supervised and unsupervised learning respectively,and some representative latest super-resolution reconstruction technologies are introduced.Then,the related problems of super-resolution technology,namely performance evaluation indicators and standard data sets,are discussed,and several typical algorithms are compared by experiments.Finally,the future research trend of image super-resolution algorithm is prospected.
作者 刘颖 朱丽 林庆帆 李莹华 王富平 卢津 LIU Ying;ZHU Li;LIM Kengpang;LI Yinghua;WANG Fuping;LU Jin(Key Laboratory of Electronic Information Application Technology for Crime Scene Investigation,Ministry of Public Security,Xi'an University of Posts and Telecommunications,Xi’an 710121,China;International Joint Research Center for Wireless Communication and Information Processing Technology of Shaanxi Province,Xi'an 710121,China;Center for Image and Information Processing,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;Silicon Vision Pte Ltd,Singapore 787820,Singapore)
出处 《计算机科学与探索》 CSCD 北大核心 2020年第2期181-199,共19页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61802305 公安部科技强警项目No.2016GABJC51~~
关键词 深度学习 图像超分辨率 有监督学习 无监督学习 deep learning image super-resolution supervised learning unsupervised learning
  • 相关文献

参考文献9

二级参考文献59

  • 1石友学,罗钟铉.利用几何特征和小波变换实现图像的缩放匹配[J].计算机辅助设计与图形学学报,2005,17(4):825-828. 被引量:5
  • 2李均利,陈刚,满家巨.客观评价彩色图像编码质量的模糊积分方法[J].计算机辅助设计与图形学学报,2005,17(8):1823-1827. 被引量:3
  • 3章卫祥,周秉锋.一个稳健的用于HDR图像的相机响应函数标定算法[J].计算机学报,2006,29(4):658-663. 被引量:17
  • 4Park S C, Park M K, Kang M G. Super-resolution image re- construction : a technical review [ J ]. IEEE signal processing magazine ,2003,20(3 ) :21 - 36. 被引量:1
  • 5Qiu G P, Reinhard E, Finlayson G. Special issue on high dy- namic range imaging [ J ]. Journal of Visual Communication and Image Representation,2007,18 (5) : 357 - 358. 被引量:1
  • 6Morse B S, Schwartzwald D. Image magnification using level- set reconstruction[ A ]. Proceedings of the 2001 IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition [ C ]. Kauai, Hawaii, USA ,2001,1:333 - 340. 被引量:1
  • 7Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model [ J ]. IEEE Trans actions on Image Processing,2005,14(10) :1647 -1659. 被引量:1
  • 8Zhang X L, Lam K M, Shen L S. Image magnification based on adaptive MRF model parameter estimation [ A ]. Proceed- ings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems [ C ]. Hong Kong, 2005:653 - 656. 被引量:1
  • 9Zhang X L, Lam K M, Shen L S. Image magnification based on a blockwise adaptive Markov random field model [ J 1. Im- age and Vision Computing, 2008,26 (9). 被引量:1
  • 10Aly H A. Regularized image up-sampling[ D ]. Ottawa: Uni- versity of Ottawa,2004. 被引量:1

共引文献312

同被引文献168

引证文献23

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部