期刊文献+

监督与半监督学习下的数据流集成分类综述 被引量:6

Overview of data stream ensemble classification based onsupervised and semi-supervised learning
下载PDF
导出
摘要 在监督或半监督学习的条件下对数据流集成分类进行研究是一个很有意义的方向。从基分类器、关键技术、集成策略等三个方面进行介绍,其中,基分类器主要介绍了决策树、神经网络、支持向量机等;关键技术从增量、在线等方面介绍;集成策略主要介绍了boosting、stacking等。对不同集成方法的优缺点、对比算法和实验数据集进行了总结与分析。最后给出了进一步研究方向,包括监督和半监督学习下对于概念漂移的处理、对于同质集成和异质集成的研究,无监督学习下的数据流集成分类等。 It is a very meaningful direction to study data stream ensemble classification based on the condition of supervised or semi-supervised learning.This paper introduced three aspects including base classifiers,key technologies and ensemble strategies.The base classifiers mainly introduced decision trees,neural networks,support vector machines,etc.The key technologies were introduced from incremental and online aspects,and the ensemble strategies mainly introduced boosting,stacking,etc.This paper summarized and analyzed the advantages and disadvantages of different ensemble methods,comparison algorithms and experimental data sets.Finally,it gave the further research directions,including the handling of concept drift based on supervised and semi-supervised learning,the study of homogeneous integration and heterogeneous integration,and the classification of data stream ensemble based on unsupervised learning.
作者 李小娟 韩萌 王乐 张妮 程浩东 Li Xiaojuan;Han Meng;Wang Le;Zhang Ni;Cheng Haodong(School of Computer Science&Engineering,North Minzu University,Yinchuan 750021,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第7期1921-1929,共9页 Application Research of Computers
基金 国家自然科学基金资助项目(62062004) 宁夏自然科学基金资助项目(2020AAC03216)。
关键词 数据流 集成学习 监督学习 半监督学习 data stream ensemble learning supervised learning semi-supervised learning
  • 相关文献

参考文献8

二级参考文献112

  • 1邓超,郭茂祖.基于自适应数据剪辑策略的Tri-training算法[J].计算机学报,2007,30(8):1213-1226. 被引量:15
  • 2Bifet, A., Kirkby, R., Holmes, G., Pfahringer, B., 2007. MOA: Massive Online Analysis. Available from http://moa.cs. waikato.ac.nz/[Accessed on Jan. 31, 2010]. 被引量:1
  • 3Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R., 2009. New Ensemble Methods for Evolving Data Streams Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.139-148. [doi:10.1145/ 1557019.1557041]. 被引量:1
  • 4Bifet, A., Holmes, G., Pfahringer, B., Frank, E., 2010. Fast perceptron decision tree learning from evolving data streams. LNCS, 6119:299-310. [doi:10.1007/978-3-642- 13672-6_30]. 被引量:1
  • 5Chapelle, O., Scholkopf, B., Zien, A., 2006. Semi-supervised Learning. MIT Press, Cambridge, USA, p.5. 被引量:1
  • 6Domingos, P., Hulten, G., 2000. Mining High-Speed Data Streams. Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.71-80. [doi: 10.11451347090.347107]. 被引量:1
  • 7Gama, J., Rocha, R., Medas, P., 2003. Accurate Decision Trees for Mining High-Speed Data Streams. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.523-528. [doi:10.1145/956750.956813]. 被引量:1
  • 8Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W., 1999. BOAT--Optimistic Decision Tree Construction. Proc. ACM SIGMOD Int. Conf. on Management of Data,p. ] 69- 1 80. [doi: 10.1145/304182.304197]. 被引量:1
  • 9Gehrke, J., Ramakrishnan, R., Ganti, V., 2000. RainForest--a framework for fast decision tree construction of large datasets. Data Min. Knowl. Disc., 4(2/3):127-162. [doi: 10.1023/A: 1009839829793]. 被引量:1
  • 10Greenwald, M., Khanna, S., 2001. Space-Efficient Online Computation of Quantile Summaries. Proc. ACM SIGMOD Int. Conf. on Management of Data, p.58-66. [doi:l O. 1145/375663.375670]. 被引量:1

共引文献130

同被引文献55

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部