期刊文献+

融合异构信息的网络视频在线半监督分类方法 被引量:2

Online Semi-Supervised Web Video Classification via Heterogeneous Attribute Fusion
下载PDF
导出
摘要 针对大规模网络视频数据的学习需要考虑无标签数据和异构信息的问题,提出了一种基于视觉和文本异构信息的网络视频在线半监督学习方法。该方法将文本和视觉看作2个视图,采用图作为基分类器对每个视图进行建模,并利用线性邻域的传播算法来预测样本类别。在不同视图之间采用多图上的协同训练,利用未标记样本增量地更新基分类器,并根据类别相关的融合方法确定最终结果,从而提高了分类准确率。实验结果表明,该方法的结果优于支持向量机方法约8.3%,在线增量更新后,学习器的性能提高了约3%,因此比较适合于大规模视频数据的在线半监督学习。 Learning large scale of web video data requires considering unlabeled data and heterogeneous information.A novel online semi-supervised learning method is proposed for the web video classification,which adopts graphs as base classifiers on each view of texts and videos,and propagates labels by linear neighborhood propagation algorithm.The unlabeled data are chosen online with co-training strategy on multiple graphs and base classifiers are incrementally updated.The proposed method increases the classification accuracy and is suitable for online semi-supervised learning of large scale of web video data.Experimental results show that the average accuracy of this method is approximately 8.3% higher than support vector machines,and the accuracy of learners after the online incremental learning increases by approximately 3%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第7期96-101,共6页 Journal of Xi'an Jiaotong University
基金 国家杰出青年基金资助项目(6970025) 国家自然科学基金资助项目(60905018) 国家"十二五"科技支撑计划重点课题(2011BAK08B02)
关键词 网络视频 异构信息 半监督分类 web video heterogeneous attribute semi-supervised classification
  • 相关文献

参考文献14

  • 1刘安文,支琤,张瑞,盛骁杰,杨小康.基于语义概念的视频检索系统的设计与实现[J].中国图象图形学报,2008,13(10):2055-2058. 被引量:4
  • 2YANG Linjun, LIU Jiemin, YANG Xiaokang, et al. Multi-modality web video categorization [C] // Pro- ceedings of the International Workshop on Workshop on Multimedia Information Retrieval. Madison, Wis- consin, USA: ACM, 2007: 265-274. 被引量:1
  • 3CUI Bin, ZHANG Ce, CONG Gao. Content-enriched classifier for web video classification [C]///Proceedings of the 33rd international ACM SIGIR Conference on Research and Development in Information Retrieval. Madison, Wisconsin, USA: ACM, 2010: 619-626. 被引量:1
  • 4ZHANG Xu, SONG Yicheng, CAO Juan, et al. Large scale incremental web video categorization [C]//Proceedings of the 1st Workshop on Web-Scale Multime- dia Corpus. Madison, Wisconsin, USA: ACM, 2009: 33-40. 被引量:1
  • 5WU Xiao, ZHAO Wanlei, NGO C W. Towards Google challenge: combining contextual and social information for web video categorization [C] // Proceedings of the 17th ACM International Conference on Multimedia. Madison, Wisconsin, USA: ACM, 2009: 1109-1110. 被引量:1
  • 6CHEN Zhineng, CAO Juan, SONG Yicheng, et al. Web video categorization based on Wikipedia categories and content-duplicated open resources [C]//Proceedings of the International Conference on Multimedia. Madison, Wisconsin, USA:ACM, 2010: 1107-1110. 被引量:1
  • 7LEUNG J K W, LI C H, IP T K. Commentary-based video categorization and concept discovery [C]//Pro- ceedings of the 2nd ACM Workshop on Social Web Search and Mining. Madison, Wisconsin, USA: ACM, 2009: 49-56. 被引量:1
  • 8WANG Jingdong, WANG Fei, ZHANG Changshui, et al. Linear neighborhood propagation and its applica- tions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9) : 1600-1615. 被引量:1
  • 9BLUM A, CHAWLA S. Learning from labeled and unlabeled data using graph mincuts [C]//Proceedings of the 18th International Conference on Machine Learning. Madison, Wisconsin, USA: ACM, 2001: 19-26. 被引量:1
  • 10ZHOU D, BOUSQUET O, LAL T, et al. Learning with local and global consistency [C] // Advances in Neural Information Processing Systems. Denver, CO, USA: MIT Press, 2004: 321-328. 被引量:1

二级参考文献5

  • 1Smeaton A F, Over P, Kraaij W. Evaluation Campaigns and TRECVid[ DB/OL]. http://doi. acm. org/10. 1145/1178677. 117872, 2006. 被引量:1
  • 2Cotsaccs C, Nikolaidis N, Pitas I. Video shot detection and condensed representation [ J ]. IEEE signal processing magazine, 2006, 23(2) : 28-37. 被引量:1
  • 3Amir A, Argillander J, Campbell M. Ibm Research Trecvid-2005 Video Retrieval System [ EB/OL ]. http://www-nlpir.nist. gov/ projects/tvpubs/tv.pubs. org. html, 2005. 被引量:1
  • 4Chang S F, Hsu W, Kennedy L. Columbia University TRECVID- 2005 Video Search and High-Level Feature Extraction [EB/OL].http ://www-nipir. hist. gov/projects/tvpubs/tv. pubs. org. html,2005. 被引量:1
  • 5Chang Chih-chung, Lin Chih-jen. LIBSVM: A Library for Support Vector Machines [ CP/OL]. http://www.csie. ntu. edu. tw/-cjlin/ libsvm, 2001. 被引量:1

共引文献3

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部