摘要
可展结构可通过变更自身形状适应多种工作状态,具有大折展比、便于运输和储藏等优点,在航空航天、土木建筑、军事工程等领域具有广阔的应用前景.其中,利用空间过约束机构组建的机构式可展结构还具有便于操控和可多次重复使用等优势,是可展结构发展的一个重要方向.本文提出的一种新型二重对称Bricard 6R机构,具有较好的对称性,为机构式可展结构提供了一种潜在基本单元.为便于应用,本文对其运动学通解进行了求解.首先,通过D-H方法建立闭环运动方程,推导了该机构的运动学通解.其次,通过分析两条运动轨迹的交点,明确了分岔位置.接着,给出了该机构的另一运动模式——球面4R机构模式的条件以及运动规律方程.最后,以α=3π/2、γ=π/2、a=15、r=5的二重对称Bricard 6R机构为例,通过实物模型与运动学曲线相匹配的方式,验证了运动学通解的正确性.
A deployable structure can change its shape according to the need of working states,which always gives it the advantages of a large expansion/packing ratio,easy transportation and storage.Therefore,such structures have great application prospects in aerospace,civil engineering,and the military.The structural deployable structure con-structed with spatial overconstrained linkages is easy to manipulate and is reusable.It is an important direction for the development of deployable structures.In this paper,a novel general twofold-symmetric Bricard 6R linkage is pro-posed.This linkage can be used as potential basic elements of structural deployable structures due to the twofold symmetry.To facilitate further application,the general kinematics of this linkage will be derived in this paper.First,the closure equations are established by the D-H method,and the general kinematic solutions of the general twofold-symmetric Bricard 6R mechanism are derived.The bifurcation position is determined by subsequently combining equations of the two motion paths.Then,the configuration condition and motion law of the spherical 4R linkage mode are given.Finally,a linkage withα=3π/2,γ=π/2,a=15,and r=5 is analyzed,and the matching of the physical prototype and motion paths verifies the validity of the kinematic solutions.
作者
杨富富
陈昆精
Yang Fufu;Chen Kunjing(School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350100,China;Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education,Tianjin University,Tianjin 300350,China)
出处
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2021年第11期1168-1178,共11页
Journal of Tianjin University:Science and Technology
基金
国家自然科学基金资助项目(51905101)
福建省自然科学基金资助项目(2019J01209)
天津大学-福州大学自主创新基金合作项目(TF-1901).