期刊文献+

基于多特征选择的膝关节骨关节炎SVM分级研究 被引量:2

Classification of knee osteoarthritis by SVM based on multi-feature selection
下载PDF
导出
摘要 骨关节炎是中老年人群最常见的关节疾病,该疾病及其并发症占据了全球10%的医疗问题。其中膝关节骨关节炎最为严重,致残风险极高。尽早发现并介入治疗对于缓解其症状,减少其危害有着至关重要的意义。首先收集了大量膝关节DR影像数据,对获得的数据进行多种纹理特征和融合特征的提取,将提取的特征向量进行各种组合作为输入训练SVM模型,使用网格搜索法进行了进行参数寻优。训练完成的模型在测试集上的准确率最高可以达到84.29%,具有良好的智能分类诊断性能。使用训练完的SVM模型,可以有效的对膝关节骨性关节炎进行分级,辅助医生进行诊断,对膝关节骨关节炎的早期诊断,尽早介入治疗有着重要意义。 Osteoarthritis is the most common joint disease in middle-aged and elderly people. The disease and its complications account for 10 per cent of global medical problems. Among them, osteoarthritis of the knee is the most serious and the risk of disability is very high. Early detection and interventional treatment is of great significance to relieve the symptoms and reduce the harm. Firstly, a large number of knee joint DR image data were collected. Various texture features and fusion features were extracted from the obtained data. Then, various combinations of extracted feature vectors were used as input to the training support vector machine model. We use the grid search method to optimize the parameters. The highest accuracy of the trained model on the test set can reach 84.29%, which has good intelligent classification and diagnosis performance. Using the trained SVM model can effectively grade knee osteoarthritis and assist doctors in diagnosis, which is of great significance for early diagnosis and early intervention treatment of knee osteoarthritis.
作者 刘志鹏 李修寒 冯锐 姚庆强 王伟 吴小玲 Liu Zhipeng;Li Xiuhan;Feng Rui;Yao Qingqiang;Wang Wei;Wu Xiaoling(Department of Biomedical Engineering,Nanjing Medical University,Nanjing 210000,China;Nanjing First Hospital,Nanjing 210000,China)
出处 《电子测量技术》 北大核心 2021年第5期129-134,共6页 Electronic Measurement Technology
基金 国家重点研发计划(2017YFB1303203) 江苏省研究生研究与实践创新计划(JX12413673)资助。
关键词 SVM 纹理特征 融合特征 特征选择 SVM texture feature fusion feature feature selection
  • 相关文献

参考文献8

二级参考文献157

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2Gunn R. Support vector machines for classification and regression. Technical Report of University of Southamption,1998. 被引量:1
  • 3Lin Tienlin, Lin Chihjen. A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, http ://www. csie. ntu. edu. tw/-cjlin/. 2003. 被引量:1
  • 4Chang Chihchung , Lin Chihjen. LIBSVM: a library for support vector machines. Last updated: February, http://www, csie. ntu. edu. tw/- ejlin/libsvm. 2009. 被引量:1
  • 5Hsu Chihwei, Chang Chihehung, Lin Chihjen. A practical guide to support vector classieation, http://www, esie. ntu. edu. tw/- cjlin/papors/guide/guide, pdf. 2001. 被引量:1
  • 6Ellingson W A, Steckenrider J S, Meitzler T J.Defect de- tection in ceramic armor using phased array ultrasound[J]. Advances in Science and Technology, 2010 , 65 :143-152. 被引量:1
  • 7Zhao Jie, Kong Qing-Jie, Zhao Xu, et al.A method for detection and classification of glass defects in low reso- lution images[C]//6th Intemational Conference on Im- age and Graphics (ICIG), Hefei, Anhui, 2011 : 642-647. 被引量:1
  • 8Yang Xi, Qi Dawei, Li Xianhong.Multi-scale edge de- tection of wood defect images based on the dyadic wavelet tmnsform[C]//Intemational Conference on Machine Vision and Human-Machine Interface (MVHI) , Kaifeng, China, 2010: 120-123. 被引量:1
  • 9Shi Meihong,Fu Rong,Guo Rong,et al.Fabric defect de-tection using local contrast deviations[J].Multimedia Tools and Applications, 2010,52( 1 ) : 147-157. 被引量:1
  • 10Yang Xuezhi, Pang G, Yung N.Fabric defect classification using wavelet frames and minimum classification error training[C]//The 37th IAS Annual Meeting of Industry Applications Society, Pittsburgh, PA, 2002, 1 : 290-296. 被引量:1

共引文献270

同被引文献18

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部