期刊文献+

基于数据挖掘分型探析新冠肺炎防治组方规律 被引量:12

Analysis of the Formulary Patterns of COVID-19’s Pneumonia Prevention and Treatment Based on Data Mining
下载PDF
导出
摘要 目的探索新冠肺炎防治方案各期各型组方用药规律。方法收集各地卫生健康委员会和各地中医药管理局发布的防治方案,通过SPSS Modeler 18.0和SPSS Statistics 21.0分别进行频次统计,关联分析和系统聚类分析。结果(1)预防期:高频药物为金银花、黄芪、防风等;核心药对有"防风-黄芪"等;聚类后可分为3类。(2)治疗期:寒湿型高频药物有麻黄、杏仁等;核心药对有"茯苓-炙甘草"等;聚类后可分为4类。湿热型高频药物为杏仁、黄芩等;核心药对有"薏苡仁-杏仁";聚类后可分为5类。湿毒型高频药物为石膏、葶苈子;核心药对有"赤芍-石膏";聚类后可分为5类。脱证高频药为人参、附子等;核心药对有"附子-人参";聚类后可分为2类。(3)恢复期:高频药物有甘草、麦冬等;核心药对有"麦冬-淡竹叶"等;聚类后可分为2类。结论新冠肺炎在各期各型病性不同,治疗原则存在差异。预防期重在益气固表。在治疗期中,寒湿型重在解表散寒、清肺止咳;湿热型重在清热解毒燥湿、止咳平喘;湿毒型重在通腑泻热、凉血开窍;脱证重在回阳固脱。恢复期重在益气养阴、兼清余邪。 Objective To explore the pattern of formula in each phase and type of COVID-19 prevention and treatment protocol.Methods The prevention and treatment protocols issued by local health and health committees and local TCM administrations were collected,and frequency statistics,association analysis and systematic cluster analysis were performed by SPSS Modeler 18.0 and SPSS Statistics 21.0,respectively.Results(1)In prevention period,the most frequently used medicinals were Jinyinhua(Flos Lonicerae),Huangqi(Radix Astragali seu Hedysari),Fangfeng(Radix Saposhnikoviae),etc.;core medicinal pair was"Fangfeng-Huangqi".They could be divided into 3 categories after the process of clustering.(2)In treatment period,the most frequently used medicinals indicated for cold-damp were Mahuang(Herba Ephedrae),Xingren(Semen Armeniacae Amarum),etc.,and the core medicinal pair was"Fuling(Poria)-Zhigancao(Radix Glycyrrhizae)".These medicinals can be divided into 4 categories after clustering.The most frequently used medicinals indicated for damp-heat were Xingren,Huangqin(Radix Scutellariae),etc.,and core medicinal pair was"Yiyiren(Semen Coicis)-Xingren",which could be divided into 5 categories after clustering.The high frequency medicinals for dampness toxin were Shigao(Gypsum Fibrosum),Tinglizi(Semen Descurainiae)and so on,which could be divided into 5 categories after clustering.The core medicinal pair was"Chishao(Radix Paeoniae Rubra)-Shigao".The high-frequency medicinals for desertion were Renshen(Radix Ginseng),Fuzi(Radix Aconiti Lateralis Preparata)and so on,and the core medicinals was"Renshen-Fuzi".These medicinals could be divided into 2 categories after clustering.(3)In recovery period,high frequency medicinals Gancao,Maidong(Radix Ophiopogonis),etc.;core medicinals pair was"Maidong-Danzhuye(Herba Lophatheri)".These medicinals could be divided into 2 categories after the process of clustering.Conclusion Various therapeutic principles were applied to the treatment of COVID-19 in different stages.In prevention period,the focus sh
作者 黄宗海 何黎 杨思敏 宋虹霏 杨书 冯全生 温川飙 Huang Zonghai;He Li;Yang Simin;Song Hongfei;Yang Shu;Feng Quansheng;Wen Chuanbiao(School of Medicial Information Engineering,Chengdu University of Traditional Chinese Medicine,Chengdu 610075,China;School of Acupuncture-Moxibustion and Tuina,Chengdu University of Traditional Chinese Medicine,Chengdu 610075,China;College of Basic Medicine,Chengdu University of Traditional Chinese Medicine,Chengdu 610075,China)
出处 《世界科学技术-中医药现代化》 CSCD 北大核心 2021年第4期1137-1146,共10页 Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology
基金 国家科学技术部国家重点研发计划课题(2018YFC1704104):西部地区名老中医学术观点、特色诊疗方法和重大疾病防治经验研究,负责人:冯全生 成都中医药大学中医药大学杏林学者-新冠病毒应急专项(NO.XGZX2013):基于循环神经网络的COVID-19流行趋势研究,负责人:杨书。
关键词 新冠肺炎 防治方案 频次统计 关联分析 聚类分析 COVID-19 Control plan Frequency statistics Association analysis Cluster analysis
  • 相关文献

参考文献14

二级参考文献129

共引文献1280

同被引文献294

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部