期刊文献+

基于自注意深度学习的商品评论情感分类 被引量:1

Emotional Classification of Commodity Comments Based on Self-attention Deep Learning
下载PDF
导出
摘要 电子商务突飞猛进,网购成为人们消费必不可少的渠道。网络商品评论的情感极性是获取顾客对该种类商品反馈的最直接方式,商家可以通过分析评论获取顾客对所购商品的感受,为后续销售计划变更和产品改进及时作出决策。针对CNN只能提取局部特征、RNN易导致梯度消失与爆炸的问题,提出一个结合RNN变体-GRU与MSCNN的XL-GSAtMSC模型。研究表明,在商品评论情感分类任务中,该模型各项评价指标均达到了95%,比传统模型提升了10%,既克服了传统情感领域词典的不足,又不用人为提取特征,实验证明了该模型的可行性与实用性。 With the rapid update of Internet technology and the rapid development of e-commerce,online shopping has become an indispensable way for people to buy goods.The emotional polarity of online commodity comments is the most direct way to get customers’feedback on this kind of commodities.Merchants can obtain customers’feelings on the purchased commodities by analyzing the comments,and make timely decisions for subsequent sales plan changes and product improvements.Aiming at the problem that the convolutional neural network can only extract local features and the cyclic neural network can easily lead to gradient disappearance and explosion,a XL-GSAtMSC model combining the variant of the cyclic neural network-gated cyclic unit and the multi-core jumping convolutional neural network is proposed.The research shows that in the task of classifying the emotion of commodity comments,all the evaluation indexes of this model reach 95%,which is 10% higher than the traditional model.The model not only overcomes the shortage of field dictionary in the traditional affective dictionary method,but also does not need to extract the features artificially.The results of various indicators prove the feasibility and practicability of the model.
作者 严鹏 YAN Peng(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《软件导刊》 2021年第6期75-79,共5页 Software Guide
关键词 情感分类 商品评论 深度学习 循环神经网络 卷积神经网络 emotional classification goods comments deep learning recurrent neural network convolutional neural network
  • 相关文献

参考文献8

二级参考文献66

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 2孙茜.Web2.0的含义、特征与应用研究[J].现代情报,2006,26(2):69-70. 被引量:161
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 4王根,赵军.基于多重冗余标记CRFs的句子情感分析研究[J].中文信息学报,2007,21(5):51-55. 被引量:32
  • 5姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 6LIU B, HU M, CHENG J. Opinion observer: Analyzing and comparing opinions on the Web[ C]// Proceedings of the 14th International Conference on World Wide Web: WWW 2005. New York: ACM Press, 2005:342 - 351. 被引量:1
  • 7PANG B, LEE L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts[ C]// Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Morristown, N J, USA: Association for Computational Linguistics, 2004:271 -278. 被引量:1
  • 8YU H, HATZIVASSILOGLOU V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences[ C]// Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Morristown, N J, USA: Association for Computational Linguistics. 2003:129 - 136. 被引量:1
  • 9WILSON T, HOFFMANN P, SOMASUNDARAN S, et al. Opinion-Finder: A system for subjectivity analysis[ C]// Proceedings of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing. Morristown. NJ, USA: Association for Computational Linguistics. 2005: 34-35. 被引量:1
  • 10DAVE K, LAWRENCE S, DPENNOCK M. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews[ C]// Proceedings of the 12th International Conference on World Wide Web. New York: ACM Press, 2003:519-528. 被引量:1

共引文献847

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部