期刊文献+

自然环境下单木检测方法研究——基于改进Faster-RCNN网络

Single Tree Detection Method in Natural Environment:Based on Improved Faster-RCNN Network
下载PDF
导出
摘要 为研究在果林智能产业化过程中的单木检测技术,实现果林的精准管理,采集江西省赣南地区脐橙果园的高空间分辨率遥感数据,通过K-means聚类分析anchor(锚点)改进网络参数;提出一种改进的网络结构Des Faster-RCNN网络,保证在网络卷积提取特征的过程中,对浅层特征的复用以及融合;在训练过程中加入了迁移学习进行微调,加强对小目标以及密集粘连目标的检测鲁棒性。实验结果显示,加入K-means改进的Des Faster-RCNN网络在测试集上的检测精度为97.68%,召回率为97.99%,F1值为0.9783,分别较Faster-RCNN网络提高了8.01个百分点、8.14个百分点以及0.081,相较于其他检测框架及传统果林检测研究方法,检测精度提高10%左右。单张影像的平均检测时间在0.138 s左右。研究表明,笔者提出的加入K-means改进的Des Faster-RCNN网络,能够适应复杂环境下的小型密集目标的检测任务,并获得较高的检测精度及鲁棒性。 To study the single tree detection technology in the process of intelligent industrialization and precise management of fruit forests,this paper collected high spatial resolution remote sensing data of navel orange orchards in southern Jiangxi Province,and used K-means clustering analysis anchor(anchor points)to improve network parameters;proposed an improved network structure Des Faster-RCNN network to ensure the multiplexing and fusion of shallow features during the process of network convolution extracted features;added transfer learning in the training process to achieve fine-tuning.The robustness of detected small targets and densely adhered targets was enhanced.The experimental results showed that the detection accuracy of the Des Faster-RCNN network was improved by adding K-means on the test set was 97.68%,the recall rate was 97.99%,and the F1 value was 0.9783,increased by 8.01%,8.14%and 0.081,respectively,compared with the those of Faster-RCNN network.And compared with other detection frameworks and traditional fruit forest detection research methods,the detection accuracy was improved by about 10%.The average detection time of a single image was about 0.138 s.In conclusion,the Des Faster-RCNN network improved by adding K-means proposed in this paper can adapt to the detection task of small and dense targets in complex environments,and obtain higher detection accuracy and robustness.
作者 张宇棠 谢晓春 Zhang Yutang;Xie Xiaochun(College of Physics and Electronic Information,Gannan Normal University,Ganzhou Jiangxi 341000)
出处 《中国农学通报》 2021年第13期135-146,共12页 Chinese Agricultural Science Bulletin
基金 国家自然科学基金项目“分数阶Fourier域常规雷达目标识别的分形理论及其应用研究”(61561004) 江西省教育厅科学技术研究项目“基于压缩感知的混沌噪声雷达成像方法研究”(GJJ170825) 江西省研究生创新基金项目“基于深度学习的脐橙遥感影像单木提取和树种识别方法研究”(YC2019-S404)。
关键词 K-MEANS Des Faster-RCNN 迁移学习 单木检测 锚点 K-means Des Faster-RCNN transfer learning single tree recognition anchor
  • 相关文献

参考文献4

二级参考文献46

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部