摘要
【目的/意义】在现有的信息推荐方法不足的前提下,深入分析知识图谱在健康医疗社区信息推荐中的优势以及健康信息推荐中的不同场景,旨在为不同类型用户提供场景化信息推荐方案。【方法/过程】依据场景划分,搭建基于语义的同主题推荐模型、基于病情画像与用户兴趣的个性化推荐模型以及基于情境感知的信息推荐模型,并对其中具体模型和算法进行了设计与实现。【结果/结论】构建不同场景下的信息推荐模型,推理并输出各类医疗知识和信息,能够辅助渴望获得更为精准的在线健康信息的患者。【创新/局限】提出了融合知识图谱和病情画像的在线医疗社区信息推荐,构建了融合知识图谱和病情画像的在线医疗社区信息推荐方案。仍需进一步强化知识图谱与用户画像的融合应用。
【Purpose/significance】Under the premise of insufficient existing information recommendation methods,in-depth analysis of the advantages of knowledge graphs in health medical community information recommendation and different scenarios in health information recommendation,aiming to provide scenario-based information recommendation for different types of users.【Method/process】According to the division of the scene,a co-topic recommendation model based on semantics,a personalized recommendation model based on disease portraits and user interests,and a situational information recommendation model are designed,and specific models and algorithms are designed and implemented.【Result/conclusion】Construct recommendation models in different scenarios,reason and output various medical knowledge and information,which can assist patients who desire more accurate online health information.【Innovation/limitation】Proposed an online medical community information recommendation fusion of knowledge maps and illness profiles,and constructed an online medical community information recommendation program that fused knowledge maps and illness profiles.It is still necessary to further strengthen the application of the integration of knowledge graphs and user portraits.
作者
翟姗姗
胡畔
潘英增
郑路
ZHAI Shan-shan;HU Pan;PAN Ying-zeng;ZHENG Lu(School of Information Management,Central China Normal University,Wuhan 430079,China)
出处
《情报科学》
CSSCI
北大核心
2021年第5期97-105,共9页
Information Science
基金
国家社科基金一般项目“数字人文视域下非遗知识图谱自动构建与长期演进研究”(20BTQ071)。
关键词
信息推荐
病情画像
知识图谱
在线医疗社区
场景化推荐
information recommendation
medical portrait
knowledge graph
online medical community
scene-based information recommendation