期刊文献+

复杂背景下SAR近岸舰船检测 被引量:8

SAR inshore ship detection algorithm in complex background
原文传递
导出
摘要 目的船舶在合成孔径雷达(synthetic aperture radar,SAR)图像中的检测是研究热点,但目前适合近岸舰船检测的方法并不多。在SAR图像中,近岸舰船受到岸上建筑物的干扰严重,尤其是对于排列紧密的近岸船舶来说,其对比度相似,很难区分船舶与背景。为解决近岸舰船检测困难问题,提出了一种基于加权双向注意金字塔网络的近岸舰船检测方法。方法本文在FCOS(fully convolutional one-stage)网络的基础上提出了一种新的双向特征金字塔网络。将卷积注意力机制模块(convolutional block attention module,CBAM)与金字塔网络的每个特征图进行连接,提取丰富的语义信息特征;借鉴PANet(path aggregation network)的思想,添加自下而上的金字塔模块,突出不同尺度船舶的显著特征。最后提出了一种加权特征融合方式,使特征图提取的特征信息的着重点不同,提高舰船检测精度。结果本文在公开的SAR图像舰船数据集SSDD(SAR ship detection dataset)上进行实验。实验结果表明,相比原FCOS方法,本文方法的检测精度提高了9.5%;与对比方法相比,本文方法在同等条件下的检测精度达到90.2%。在速度方面,本文方法比SSD提高0.6 s,比Faster R-CNN(region convolutional neural network)提高1.67 s,明显优于对比方法。结论本文通过改进特征网络和特征融合方式,提高了算法对SAR图像舰船目标检测中背景复杂、排列紧密的近岸舰船目标的定位效果,有效增强了对舰船目标定位的准确性。 Objective Synthetic aperture radar(SAR)is an active sensor that uses microwave remote sensing technology.Compared with visible and infrared sensors,it is not limited by light,weather,and climate conditions and has all-weather and multi-angle data acquisition capability.With the development of SAR imaging technology,SAR image has been widely used in the military field for intelligence detection,navigation guidance,ocean ship detection,etc.Through the detection of ship target in the SAR image,the ship information of the sea surface,port,and other locations can be obtained quickly,which improves border prevention ability.The traditional methods of SAR ship detection have difficulty in detecting smallscale ships and avoiding the interference of inshore complex background.Moreover,the quality of SAR images needs to be high,and the images need to be preprocessed before detection.In addition,the robustness and generalization of most SAR images are not good enough for specific scenes,and they are susceptible to speckle noise,which has certain limitations.With the development of artificial intelligence,machine learning has been introduced into the SAR image target detection field.Deep learning is an enhanced version of machine learning.Recently,it has been gradually applied for ship detection in SAR images,but some problems need to be addressed.First,the near shore ships are seriously disturbed by the buildings on the shore.The existing detection methods cannot effectively distinguish the ship target from the background,so it is easy to mix the background with the ship target or mistake the target for the background,resulting in missed detection.Second,the existing algorithm cannot accurately locate the closely arranged ship targets,and the positioning effect is poor.It is easy to regard multiple targets as one target,which leads to wrong detection,resulting in low accuracy of detection results or high constant false alarm rate.To solve these problems,this study proposes a detection method based on bidirectional attention
作者 阮晨 郭浩 安居白 Ruan Chen;Guo Hao;An Juhai(College of Information Sciences and Technology,Dalian Maritime University,Dalian 116026,China)
出处 《中国图象图形学报》 CSCD 北大核心 2021年第5期1058-1066,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61471079)。
关键词 近岸舰船 合成孔径雷达图像 目标检测 复杂背景 深度学习 小目标 inshore ship synthetic aperture radar(SAR)image object detection complex background deep learning small target
  • 相关文献

参考文献5

二级参考文献23

共引文献48

同被引文献83

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部