期刊文献+

基于DSRBM的航空发动机数据降维与状态预测

Dimension Reduction and State Prediction of Aero-engine Data Based on DSRBM
下载PDF
导出
摘要 针对传统航空发动机状态预测需要大量经验知识,预测过程单一的缺陷,提出一种基于深度稀疏受限玻尔兹曼机网络(DSRBM)的航空发动机状态预测方法。利用深层神经网络中的DSRBM网络对高维复杂类型的发动机数据进行特征提取和降维。实验结果证明,DSRBM相较于传统的主成分分析法(PCA),降维数据辨识度高,挖掘了数据之间的隐藏联系。将提出的算法与支持向量机(SVM)算法结合对发动机状态进行预测,与经典算法进行比较,预测准确率达到87%以上,比经典算法提高3%,是对传统航空发动机状态预测方法的一个很好的补充。 Targeting the traditional aero-engine state prediction needs a lot of experience knowledge and the single process of state prediction,a method of aero-engine state prediction based on deep sparse restricted Boltzmann network(DSRBM)is proposed.The DSRBM network of deep neural network is used to extract and reduce the dimension of high-dimensional complex engine data.Experimental results show that DSRBM has a higher identification of dimensionality reduction data than the traditional principal component analysis(PCA),and it can mine hidden links between data.Combining the proposed algorithm with support vector ma⁃chine(SVM)algorithm to predict the engine state,compared with the classical algorithm,the prediction accuracy is more than 87%,it is 3%higher than the classical algorithm,which is a good supplement to the traditional engine state prediction method.
作者 鲍洋 芮国胜 张嵩 董道广 BAO Yang;RUI Guosheng;ZHANG Song;DONG Daoguang(Naval Aviation University,Yantai 264001)
机构地区 海军航空大学
出处 《舰船电子工程》 2021年第5期113-118,共6页 Ship Electronic Engineering
基金 国家自然科学基金项目(编号:41606117,41476089,6161016)资助。
关键词 状态预测 数据降维 深度学习 DSRBM网络 特征提取 航空发动机 state prediction data dimensionality reduction deep learning DSRBM network feature extraction aero-engine
  • 相关文献

参考文献4

二级参考文献31

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:279
  • 2张希军,吴志真,雷勇.航空发动机试车中转子故障诊断[J].计算机测量与控制,2005,13(11):1182-1185. 被引量:21
  • 3郑建明,李言,袁启龙,李鹏阳.基于小波包能量谱的HMM钻头磨损监测[J].中国机械工程,2006,17(12):1237-1241. 被引量:8
  • 4W J Wang. Application of orthogonal wavelets to early gear damage detection [ J ]. Mechanical Systems and Signal Processing, 1995,9 (5)751 -765. 被引量:1
  • 5Nowicki Robert.Rough Sets in the Neuro-Fuzzy Architectures Based on Non-Monotonic Fuzzy Implications[R].Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),v 3070,Artificial Intelligent and Soft Computing-ICAISC 2004:518~525. 被引量:1
  • 6James F,Zbigniew S,Shan S,Sheela R,Witold P,Pizzi N.Classification of Meteorological Volumetric Radar Data Using Rough Set Methods[R].Pattern Recognition Letters,2003,24(6):911~920. 被引量:1
  • 7Roman W Swiniarski,Andrzej Skowron.Rough Set Methods in Feature Selection and Recognition[R].Pattern Recognition Letters,2003,24 (6):833 ~ 849. 被引量:1
  • 8Szczuka M.Rough Sets and Artificial Neural Networks[R].In; Rough Sets in Knowledge Discovery 2:Applications,Case Studies and Software Systems,Physica-Verlag,Heidelberg,1998:449~470. 被引量:1
  • 9Wroblewski,Jakub.Finding Minimal Reducts Using Genetic Algorithm (Extended Version)[R].Warsaw University of Technology,Institute of Computer Science,Reports-16/95. 被引量:1
  • 10Pawlak Z.Rough Sets[J].International Journal of Information and Computer Sciences,1982,11:341~356. 被引量:1

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部