摘要
利用共沉淀-浸渍法合成了基于可见光响应的CuO/Bi_(2)O_(3)复合催化剂,并对其光催化活化过一硫酸盐(PMS)去抗生素盐酸四环素(TC-HCl)的性能进行了探究。分别运用XRD、XPS、FESEM、UV-Vis DRS等技术对催化剂进行了结构以及形貌的表征。考察了PMS浓度、催化剂投加量及pH对TC-HCl去除的影响。结果表明:CuO的掺杂有利于提高Bi_(2)O_(3)的可见光催化性能,也增强了对PMS的活化;在可见光照射100 min、催化剂的用量为0.2 g·L^(−1)、PMS的投加量为10 mmol·L^(−1)的条件下,CuO/Bi_(2)O_(3)复合催化剂对初始浓度为40 mg·L^(−1)的TCHCl的降解率可达到99.6%;SO_(4)^(-·)和·OH是催化降解TC-HCl的主要活性物种;该复合催化剂具有很好的稳定性。以上研究结果可为探索新型非均相催化剂在抗生素废水处理的应用提供参考。
In the study,the CuO/Bi_(2)O_(3)composite catalyst based on visible light response was synthesized by co-precipitation-impregnating method,then its photocatalytic-activated peroxymonosulfate(PMS)and BPA degradation were evaluated.The structure and morphology of the catalyst were analyzed by XRD,XPS,FESEM,and UV-Vis DRS.The effects of the operational parameters including PMS concentration,catalyst dosage,and pH on photocatalytic degradation of TC-HCl were investigated.The results showed that doping CuO was beneficial to improve the visible light catalytic performance of Bi_(2)O_(3)and also enhance the activation of PMS.Under the conditions such as the catalyst dosage of 0.2 g·L^(−1),100 min visible light irradiation,PMS concentration of 10 mmol·L^(−1),the degradation rate of TC-HCl solution with initial concentration of 40 mg·L^(−1)could reach 99.6%by the CuO/Bi_(2)O_(3)composite catalyst.The quenching experiments of free radicals demonstrated that SO_(4)^(-·) and·OH were the main active species for catalytic degradation of TC-HCl.The cycle experiments proved that the composite catalyst had good stability.The research can provide reference for exploring the application of new heterogeneous catalysts in antibiotic wastewater treatment.
作者
丁丽丹
周家斌
刘文博
陈新
冯芹芹
杨玉玲
张天磊
DING Lidan;ZHOU Jiabin;LIU Wenbo;CHEN Xin;FENG Qinqin;YANG Yuling;ZHANG Tianlei(School of Chemistry and Chemical Engineering,Southwest Petroleum University,Chengdu 610500,China;School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处
《环境工程学报》
CAS
CSCD
北大核心
2021年第3期898-910,共13页
Chinese Journal of Environmental Engineering
基金
四川省科技厅重点研发项目(2020YFS0305)。